LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dget02.f
Go to the documentation of this file.
1*> \brief \b DGET02
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE DGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
12* RWORK, RESID )
13*
14* .. Scalar Arguments ..
15* CHARACTER TRANS
16* INTEGER LDA, LDB, LDX, M, N, NRHS
17* DOUBLE PRECISION RESID
18* ..
19* .. Array Arguments ..
20* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ),
21* $ X( LDX, * )
22* ..
23*
24*
25*> \par Purpose:
26* =============
27*>
28*> \verbatim
29*>
30*> DGET02 computes the residual for a solution of a system of linear
31*> equations op(A)*X = B:
32*> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
33*> where op(A) = A or A**T, depending on TRANS, and EPS is the
34*> machine epsilon.
35*> The norm used is the 1-norm.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] TRANS
42*> \verbatim
43*> TRANS is CHARACTER*1
44*> Specifies the form of the system of equations:
45*> = 'N': A * X = B (No transpose)
46*> = 'T': A**T * X = B (Transpose)
47*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
48*> \endverbatim
49*>
50*> \param[in] M
51*> \verbatim
52*> M is INTEGER
53*> The number of rows of the matrix A. M >= 0.
54*> \endverbatim
55*>
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The number of columns of the matrix A. N >= 0.
60*> \endverbatim
61*>
62*> \param[in] NRHS
63*> \verbatim
64*> NRHS is INTEGER
65*> The number of columns of B, the matrix of right hand sides.
66*> NRHS >= 0.
67*> \endverbatim
68*>
69*> \param[in] A
70*> \verbatim
71*> A is DOUBLE PRECISION array, dimension (LDA,N)
72*> The original M x N matrix A.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The leading dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] X
82*> \verbatim
83*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
84*> The computed solution vectors for the system of linear
85*> equations.
86*> \endverbatim
87*>
88*> \param[in] LDX
89*> \verbatim
90*> LDX is INTEGER
91*> The leading dimension of the array X. If TRANS = 'N',
92*> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
93*> \endverbatim
94*>
95*> \param[in,out] B
96*> \verbatim
97*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
98*> On entry, the right hand side vectors for the system of
99*> linear equations.
100*> On exit, B is overwritten with the difference B - op(A)*X.
101*> \endverbatim
102*>
103*> \param[in] LDB
104*> \verbatim
105*> LDB is INTEGER
106*> The leading dimension of the array B. IF TRANS = 'N',
107*> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
108*> \endverbatim
109*>
110*> \param[out] RWORK
111*> \verbatim
112*> RWORK is DOUBLE PRECISION array, dimension (M)
113*> \endverbatim
114*>
115*> \param[out] RESID
116*> \verbatim
117*> RESID is DOUBLE PRECISION
118*> The maximum over the number of right hand sides of
119*> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
120*> \endverbatim
121*
122* Authors:
123* ========
124*
125*> \author Univ. of Tennessee
126*> \author Univ. of California Berkeley
127*> \author Univ. of Colorado Denver
128*> \author NAG Ltd.
129*
130*> \ingroup double_lin
131*
132* =====================================================================
133 SUBROUTINE dget02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
134 $ RWORK, RESID )
135*
136* -- LAPACK test routine --
137* -- LAPACK is a software package provided by Univ. of Tennessee, --
138* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
139*
140* .. Scalar Arguments ..
141 CHARACTER TRANS
142 INTEGER LDA, LDB, LDX, M, N, NRHS
143 DOUBLE PRECISION RESID
144* ..
145* .. Array Arguments ..
146 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ),
147 $ x( ldx, * )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 DOUBLE PRECISION ZERO, ONE
154 parameter( zero = 0.0d+0, one = 1.0d+0 )
155* ..
156* .. Local Scalars ..
157 INTEGER J, N1, N2
158 DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
159* ..
160* .. External Functions ..
161 LOGICAL LSAME
162 DOUBLE PRECISION DASUM, DLAMCH, DLANGE
163 EXTERNAL lsame, dasum, dlamch, dlange
164* ..
165* .. External Subroutines ..
166 EXTERNAL dgemm
167* ..
168* .. Intrinsic Functions ..
169 INTRINSIC max
170* ..
171* .. Executable Statements ..
172*
173* Quick exit if M = 0 or N = 0 or NRHS = 0
174*
175 IF( m.LE.0 .OR. n.LE.0 .OR. nrhs.EQ.0 ) THEN
176 resid = zero
177 RETURN
178 END IF
179*
180 IF( lsame( trans, 'T' ) .OR. lsame( trans, 'C' ) ) THEN
181 n1 = n
182 n2 = m
183 ELSE
184 n1 = m
185 n2 = n
186 END IF
187*
188* Exit with RESID = 1/EPS if ANORM = 0.
189*
190 eps = dlamch( 'Epsilon' )
191 IF( lsame( trans, 'N' ) ) THEN
192 anorm = dlange( '1', m, n, a, lda, rwork )
193 ELSE
194 anorm = dlange( 'I', m, n, a, lda, rwork )
195 END IF
196 IF( anorm.LE.zero ) THEN
197 resid = one / eps
198 RETURN
199 END IF
200*
201* Compute B - op(A)*X and store in B.
202*
203 CALL dgemm( trans, 'No transpose', n1, nrhs, n2, -one, a, lda, x,
204 $ ldx, one, b, ldb )
205*
206* Compute the maximum over the number of right hand sides of
207* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ) .
208*
209 resid = zero
210 DO 10 j = 1, nrhs
211 bnorm = dasum( n1, b( 1, j ), 1 )
212 xnorm = dasum( n2, x( 1, j ), 1 )
213 IF( xnorm.LE.zero ) THEN
214 resid = one / eps
215 ELSE
216 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
217 END IF
218 10 CONTINUE
219*
220 RETURN
221*
222* End of DGET02
223*
224 END
subroutine dget02(trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DGET02
Definition dget02.f:135
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188