LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
clatm5.f
Go to the documentation of this file.
1*> \brief \b CLATM5
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
12* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
13* QBLCKB )
14*
15* .. Scalar Arguments ..
16* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
17* $ PRTYPE, QBLCKA, QBLCKB
18* REAL ALPHA
19* ..
20* .. Array Arguments ..
21* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
22* $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
23* $ L( LDL, * ), R( LDR, * )
24* ..
25*
26*
27*> \par Purpose:
28* =============
29*>
30*> \verbatim
31*>
32*> CLATM5 generates matrices involved in the Generalized Sylvester
33*> equation:
34*>
35*> A * R - L * B = C
36*> D * R - L * E = F
37*>
38*> They also satisfy (the diagonalization condition)
39*>
40*> [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] )
41*> [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] )
42*>
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] PRTYPE
49*> \verbatim
50*> PRTYPE is INTEGER
51*> "Points" to a certain type of the matrices to generate
52*> (see further details).
53*> \endverbatim
54*>
55*> \param[in] M
56*> \verbatim
57*> M is INTEGER
58*> Specifies the order of A and D and the number of rows in
59*> C, F, R and L.
60*> \endverbatim
61*>
62*> \param[in] N
63*> \verbatim
64*> N is INTEGER
65*> Specifies the order of B and E and the number of columns in
66*> C, F, R and L.
67*> \endverbatim
68*>
69*> \param[out] A
70*> \verbatim
71*> A is COMPLEX array, dimension (LDA, M).
72*> On exit A M-by-M is initialized according to PRTYPE.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The leading dimension of A.
79*> \endverbatim
80*>
81*> \param[out] B
82*> \verbatim
83*> B is COMPLEX array, dimension (LDB, N).
84*> On exit B N-by-N is initialized according to PRTYPE.
85*> \endverbatim
86*>
87*> \param[in] LDB
88*> \verbatim
89*> LDB is INTEGER
90*> The leading dimension of B.
91*> \endverbatim
92*>
93*> \param[out] C
94*> \verbatim
95*> C is COMPLEX array, dimension (LDC, N).
96*> On exit C M-by-N is initialized according to PRTYPE.
97*> \endverbatim
98*>
99*> \param[in] LDC
100*> \verbatim
101*> LDC is INTEGER
102*> The leading dimension of C.
103*> \endverbatim
104*>
105*> \param[out] D
106*> \verbatim
107*> D is COMPLEX array, dimension (LDD, M).
108*> On exit D M-by-M is initialized according to PRTYPE.
109*> \endverbatim
110*>
111*> \param[in] LDD
112*> \verbatim
113*> LDD is INTEGER
114*> The leading dimension of D.
115*> \endverbatim
116*>
117*> \param[out] E
118*> \verbatim
119*> E is COMPLEX array, dimension (LDE, N).
120*> On exit E N-by-N is initialized according to PRTYPE.
121*> \endverbatim
122*>
123*> \param[in] LDE
124*> \verbatim
125*> LDE is INTEGER
126*> The leading dimension of E.
127*> \endverbatim
128*>
129*> \param[out] F
130*> \verbatim
131*> F is COMPLEX array, dimension (LDF, N).
132*> On exit F M-by-N is initialized according to PRTYPE.
133*> \endverbatim
134*>
135*> \param[in] LDF
136*> \verbatim
137*> LDF is INTEGER
138*> The leading dimension of F.
139*> \endverbatim
140*>
141*> \param[out] R
142*> \verbatim
143*> R is COMPLEX array, dimension (LDR, N).
144*> On exit R M-by-N is initialized according to PRTYPE.
145*> \endverbatim
146*>
147*> \param[in] LDR
148*> \verbatim
149*> LDR is INTEGER
150*> The leading dimension of R.
151*> \endverbatim
152*>
153*> \param[out] L
154*> \verbatim
155*> L is COMPLEX array, dimension (LDL, N).
156*> On exit L M-by-N is initialized according to PRTYPE.
157*> \endverbatim
158*>
159*> \param[in] LDL
160*> \verbatim
161*> LDL is INTEGER
162*> The leading dimension of L.
163*> \endverbatim
164*>
165*> \param[in] ALPHA
166*> \verbatim
167*> ALPHA is REAL
168*> Parameter used in generating PRTYPE = 1 and 5 matrices.
169*> \endverbatim
170*>
171*> \param[in] QBLCKA
172*> \verbatim
173*> QBLCKA is INTEGER
174*> When PRTYPE = 3, specifies the distance between 2-by-2
175*> blocks on the diagonal in A. Otherwise, QBLCKA is not
176*> referenced. QBLCKA > 1.
177*> \endverbatim
178*>
179*> \param[in] QBLCKB
180*> \verbatim
181*> QBLCKB is INTEGER
182*> When PRTYPE = 3, specifies the distance between 2-by-2
183*> blocks on the diagonal in B. Otherwise, QBLCKB is not
184*> referenced. QBLCKB > 1.
185*> \endverbatim
186*
187* Authors:
188* ========
189*
190*> \author Univ. of Tennessee
191*> \author Univ. of California Berkeley
192*> \author Univ. of Colorado Denver
193*> \author NAG Ltd.
194*
195*> \ingroup complex_matgen
196*
197*> \par Further Details:
198* =====================
199*>
200*> \verbatim
201*>
202*> PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices
203*>
204*> A : if (i == j) then A(i, j) = 1.0
205*> if (j == i + 1) then A(i, j) = -1.0
206*> else A(i, j) = 0.0, i, j = 1...M
207*>
208*> B : if (i == j) then B(i, j) = 1.0 - ALPHA
209*> if (j == i + 1) then B(i, j) = 1.0
210*> else B(i, j) = 0.0, i, j = 1...N
211*>
212*> D : if (i == j) then D(i, j) = 1.0
213*> else D(i, j) = 0.0, i, j = 1...M
214*>
215*> E : if (i == j) then E(i, j) = 1.0
216*> else E(i, j) = 0.0, i, j = 1...N
217*>
218*> L = R are chosen from [-10...10],
219*> which specifies the right hand sides (C, F).
220*>
221*> PRTYPE = 2 or 3: Triangular and/or quasi- triangular.
222*>
223*> A : if (i <= j) then A(i, j) = [-1...1]
224*> else A(i, j) = 0.0, i, j = 1...M
225*>
226*> if (PRTYPE = 3) then
227*> A(k + 1, k + 1) = A(k, k)
228*> A(k + 1, k) = [-1...1]
229*> sign(A(k, k + 1) = -(sin(A(k + 1, k))
230*> k = 1, M - 1, QBLCKA
231*>
232*> B : if (i <= j) then B(i, j) = [-1...1]
233*> else B(i, j) = 0.0, i, j = 1...N
234*>
235*> if (PRTYPE = 3) then
236*> B(k + 1, k + 1) = B(k, k)
237*> B(k + 1, k) = [-1...1]
238*> sign(B(k, k + 1) = -(sign(B(k + 1, k))
239*> k = 1, N - 1, QBLCKB
240*>
241*> D : if (i <= j) then D(i, j) = [-1...1].
242*> else D(i, j) = 0.0, i, j = 1...M
243*>
244*>
245*> E : if (i <= j) then D(i, j) = [-1...1]
246*> else E(i, j) = 0.0, i, j = 1...N
247*>
248*> L, R are chosen from [-10...10],
249*> which specifies the right hand sides (C, F).
250*>
251*> PRTYPE = 4 Full
252*> A(i, j) = [-10...10]
253*> D(i, j) = [-1...1] i,j = 1...M
254*> B(i, j) = [-10...10]
255*> E(i, j) = [-1...1] i,j = 1...N
256*> R(i, j) = [-10...10]
257*> L(i, j) = [-1...1] i = 1..M ,j = 1...N
258*>
259*> L, R specifies the right hand sides (C, F).
260*>
261*> PRTYPE = 5 special case common and/or close eigs.
262*> \endverbatim
263*>
264* =====================================================================
265 SUBROUTINE clatm5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
266 $ E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
267 $ QBLCKB )
268*
269* -- LAPACK computational routine --
270* -- LAPACK is a software package provided by Univ. of Tennessee, --
271* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
272*
273* .. Scalar Arguments ..
274 INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
275 $ PRTYPE, QBLCKA, QBLCKB
276 REAL ALPHA
277* ..
278* .. Array Arguments ..
279 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
280 $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
281 $ l( ldl, * ), r( ldr, * )
282* ..
283*
284* =====================================================================
285*
286* .. Parameters ..
287 COMPLEX ONE, TWO, ZERO, HALF, TWENTY
288 PARAMETER ( ONE = ( 1.0e+0, 0.0e+0 ),
289 $ two = ( 2.0e+0, 0.0e+0 ),
290 $ zero = ( 0.0e+0, 0.0e+0 ),
291 $ half = ( 0.5e+0, 0.0e+0 ),
292 $ twenty = ( 2.0e+1, 0.0e+0 ) )
293* ..
294* .. Local Scalars ..
295 INTEGER I, J, K
296 COMPLEX IMEPS, REEPS
297* ..
298* .. Intrinsic Functions ..
299 INTRINSIC cmplx, mod, sin
300* ..
301* .. External Subroutines ..
302 EXTERNAL cgemm
303* ..
304* .. Executable Statements ..
305*
306 IF( prtype.EQ.1 ) THEN
307 DO 20 i = 1, m
308 DO 10 j = 1, m
309 IF( i.EQ.j ) THEN
310 a( i, j ) = one
311 d( i, j ) = one
312 ELSE IF( i.EQ.j-1 ) THEN
313 a( i, j ) = -one
314 d( i, j ) = zero
315 ELSE
316 a( i, j ) = zero
317 d( i, j ) = zero
318 END IF
319 10 CONTINUE
320 20 CONTINUE
321*
322 DO 40 i = 1, n
323 DO 30 j = 1, n
324 IF( i.EQ.j ) THEN
325 b( i, j ) = one - alpha
326 e( i, j ) = one
327 ELSE IF( i.EQ.j-1 ) THEN
328 b( i, j ) = one
329 e( i, j ) = zero
330 ELSE
331 b( i, j ) = zero
332 e( i, j ) = zero
333 END IF
334 30 CONTINUE
335 40 CONTINUE
336*
337 DO 60 i = 1, m
338 DO 50 j = 1, n
339 r( i, j ) = ( half-sin( cmplx( i / j ) ) )*twenty
340 l( i, j ) = r( i, j )
341 50 CONTINUE
342 60 CONTINUE
343*
344 ELSE IF( prtype.EQ.2 .OR. prtype.EQ.3 ) THEN
345 DO 80 i = 1, m
346 DO 70 j = 1, m
347 IF( i.LE.j ) THEN
348 a( i, j ) = ( half-sin( cmplx( i ) ) )*two
349 d( i, j ) = ( half-sin( cmplx( i*j ) ) )*two
350 ELSE
351 a( i, j ) = zero
352 d( i, j ) = zero
353 END IF
354 70 CONTINUE
355 80 CONTINUE
356*
357 DO 100 i = 1, n
358 DO 90 j = 1, n
359 IF( i.LE.j ) THEN
360 b( i, j ) = ( half-sin( cmplx( i+j ) ) )*two
361 e( i, j ) = ( half-sin( cmplx( j ) ) )*two
362 ELSE
363 b( i, j ) = zero
364 e( i, j ) = zero
365 END IF
366 90 CONTINUE
367 100 CONTINUE
368*
369 DO 120 i = 1, m
370 DO 110 j = 1, n
371 r( i, j ) = ( half-sin( cmplx( i*j ) ) )*twenty
372 l( i, j ) = ( half-sin( cmplx( i+j ) ) )*twenty
373 110 CONTINUE
374 120 CONTINUE
375*
376 IF( prtype.EQ.3 ) THEN
377 IF( qblcka.LE.1 )
378 $ qblcka = 2
379 DO 130 k = 1, m - 1, qblcka
380 a( k+1, k+1 ) = a( k, k )
381 a( k+1, k ) = -sin( a( k, k+1 ) )
382 130 CONTINUE
383*
384 IF( qblckb.LE.1 )
385 $ qblckb = 2
386 DO 140 k = 1, n - 1, qblckb
387 b( k+1, k+1 ) = b( k, k )
388 b( k+1, k ) = -sin( b( k, k+1 ) )
389 140 CONTINUE
390 END IF
391*
392 ELSE IF( prtype.EQ.4 ) THEN
393 DO 160 i = 1, m
394 DO 150 j = 1, m
395 a( i, j ) = ( half-sin( cmplx( i*j ) ) )*twenty
396 d( i, j ) = ( half-sin( cmplx( i+j ) ) )*two
397 150 CONTINUE
398 160 CONTINUE
399*
400 DO 180 i = 1, n
401 DO 170 j = 1, n
402 b( i, j ) = ( half-sin( cmplx( i+j ) ) )*twenty
403 e( i, j ) = ( half-sin( cmplx( i*j ) ) )*two
404 170 CONTINUE
405 180 CONTINUE
406*
407 DO 200 i = 1, m
408 DO 190 j = 1, n
409 r( i, j ) = ( half-sin( cmplx( j / i ) ) )*twenty
410 l( i, j ) = ( half-sin( cmplx( i*j ) ) )*two
411 190 CONTINUE
412 200 CONTINUE
413*
414 ELSE IF( prtype.GE.5 ) THEN
415 reeps = half*two*twenty / alpha
416 imeps = ( half-two ) / alpha
417 DO 220 i = 1, m
418 DO 210 j = 1, n
419 r( i, j ) = ( half-sin( cmplx( i*j ) ) )*alpha / twenty
420 l( i, j ) = ( half-sin( cmplx( i+j ) ) )*alpha / twenty
421 210 CONTINUE
422 220 CONTINUE
423*
424 DO 230 i = 1, m
425 d( i, i ) = one
426 230 CONTINUE
427*
428 DO 240 i = 1, m
429 IF( i.LE.4 ) THEN
430 a( i, i ) = one
431 IF( i.GT.2 )
432 $ a( i, i ) = one + reeps
433 IF( mod( i, 2 ).NE.0 .AND. i.LT.m ) THEN
434 a( i, i+1 ) = imeps
435 ELSE IF( i.GT.1 ) THEN
436 a( i, i-1 ) = -imeps
437 END IF
438 ELSE IF( i.LE.8 ) THEN
439 IF( i.LE.6 ) THEN
440 a( i, i ) = reeps
441 ELSE
442 a( i, i ) = -reeps
443 END IF
444 IF( mod( i, 2 ).NE.0 .AND. i.LT.m ) THEN
445 a( i, i+1 ) = one
446 ELSE IF( i.GT.1 ) THEN
447 a( i, i-1 ) = -one
448 END IF
449 ELSE
450 a( i, i ) = one
451 IF( mod( i, 2 ).NE.0 .AND. i.LT.m ) THEN
452 a( i, i+1 ) = imeps*2
453 ELSE IF( i.GT.1 ) THEN
454 a( i, i-1 ) = -imeps*2
455 END IF
456 END IF
457 240 CONTINUE
458*
459 DO 250 i = 1, n
460 e( i, i ) = one
461 IF( i.LE.4 ) THEN
462 b( i, i ) = -one
463 IF( i.GT.2 )
464 $ b( i, i ) = one - reeps
465 IF( mod( i, 2 ).NE.0 .AND. i.LT.n ) THEN
466 b( i, i+1 ) = imeps
467 ELSE IF( i.GT.1 ) THEN
468 b( i, i-1 ) = -imeps
469 END IF
470 ELSE IF( i.LE.8 ) THEN
471 IF( i.LE.6 ) THEN
472 b( i, i ) = reeps
473 ELSE
474 b( i, i ) = -reeps
475 END IF
476 IF( mod( i, 2 ).NE.0 .AND. i.LT.n ) THEN
477 b( i, i+1 ) = one + imeps
478 ELSE IF( i.GT.1 ) THEN
479 b( i, i-1 ) = -one - imeps
480 END IF
481 ELSE
482 b( i, i ) = one - reeps
483 IF( mod( i, 2 ).NE.0 .AND. i.LT.n ) THEN
484 b( i, i+1 ) = imeps*2
485 ELSE IF( i.GT.1 ) THEN
486 b( i, i-1 ) = -imeps*2
487 END IF
488 END IF
489 250 CONTINUE
490 END IF
491*
492* Compute rhs (C, F)
493*
494 CALL cgemm( 'N', 'N', m, n, m, one, a, lda, r, ldr, zero, c, ldc )
495 CALL cgemm( 'N', 'N', m, n, n, -one, l, ldl, b, ldb, one, c, ldc )
496 CALL cgemm( 'N', 'N', m, n, m, one, d, ldd, r, ldr, zero, f, ldf )
497 CALL cgemm( 'N', 'N', m, n, n, -one, l, ldl, e, lde, one, f, ldf )
498*
499* End of CLATM5
500*
501 END
subroutine clatm5(prtype, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, r, ldr, l, ldl, alpha, qblcka, qblckb)
CLATM5
Definition clatm5.f:268
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188