LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zunbdb3.f
Go to the documentation of this file.
1*> \brief \b ZUNBDB3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZUNBDB3 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb3.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb3.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb3.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
20* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION PHI(*), THETA(*)
27* COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
28* $ X11(LDX11,*), X21(LDX21,*)
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*>\verbatim
36*>
37*> ZUNBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
38*> matrix X with orthonormal columns:
39*>
40*> [ B11 ]
41*> [ X11 ] [ P1 | ] [ 0 ]
42*> [-----] = [---------] [-----] Q1**T .
43*> [ X21 ] [ | P2 ] [ B21 ]
44*> [ 0 ]
45*>
46*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P,
47*> Q, or M-Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB4 handle cases in
48*> which M-P is not the minimum dimension.
49*>
50*> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
51*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
52*> Householder vectors.
53*>
54*> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented
55*> implicitly by angles THETA, PHI.
56*>
57*>\endverbatim
58*
59* Arguments:
60* ==========
61*
62*> \param[in] M
63*> \verbatim
64*> M is INTEGER
65*> The number of rows X11 plus the number of rows in X21.
66*> \endverbatim
67*>
68*> \param[in] P
69*> \verbatim
70*> P is INTEGER
71*> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
72*> \endverbatim
73*>
74*> \param[in] Q
75*> \verbatim
76*> Q is INTEGER
77*> The number of columns in X11 and X21. 0 <= Q <= M.
78*> \endverbatim
79*>
80*> \param[in,out] X11
81*> \verbatim
82*> X11 is COMPLEX*16 array, dimension (LDX11,Q)
83*> On entry, the top block of the matrix X to be reduced. On
84*> exit, the columns of tril(X11) specify reflectors for P1 and
85*> the rows of triu(X11,1) specify reflectors for Q1.
86*> \endverbatim
87*>
88*> \param[in] LDX11
89*> \verbatim
90*> LDX11 is INTEGER
91*> The leading dimension of X11. LDX11 >= P.
92*> \endverbatim
93*>
94*> \param[in,out] X21
95*> \verbatim
96*> X21 is COMPLEX*16 array, dimension (LDX21,Q)
97*> On entry, the bottom block of the matrix X to be reduced. On
98*> exit, the columns of tril(X21) specify reflectors for P2.
99*> \endverbatim
100*>
101*> \param[in] LDX21
102*> \verbatim
103*> LDX21 is INTEGER
104*> The leading dimension of X21. LDX21 >= M-P.
105*> \endverbatim
106*>
107*> \param[out] THETA
108*> \verbatim
109*> THETA is DOUBLE PRECISION array, dimension (Q)
110*> The entries of the bidiagonal blocks B11, B21 are defined by
111*> THETA and PHI. See Further Details.
112*> \endverbatim
113*>
114*> \param[out] PHI
115*> \verbatim
116*> PHI is DOUBLE PRECISION array, dimension (Q-1)
117*> The entries of the bidiagonal blocks B11, B21 are defined by
118*> THETA and PHI. See Further Details.
119*> \endverbatim
120*>
121*> \param[out] TAUP1
122*> \verbatim
123*> TAUP1 is COMPLEX*16 array, dimension (P)
124*> The scalar factors of the elementary reflectors that define
125*> P1.
126*> \endverbatim
127*>
128*> \param[out] TAUP2
129*> \verbatim
130*> TAUP2 is COMPLEX*16 array, dimension (M-P)
131*> The scalar factors of the elementary reflectors that define
132*> P2.
133*> \endverbatim
134*>
135*> \param[out] TAUQ1
136*> \verbatim
137*> TAUQ1 is COMPLEX*16 array, dimension (Q)
138*> The scalar factors of the elementary reflectors that define
139*> Q1.
140*> \endverbatim
141*>
142*> \param[out] WORK
143*> \verbatim
144*> WORK is COMPLEX*16 array, dimension (LWORK)
145*> \endverbatim
146*>
147*> \param[in] LWORK
148*> \verbatim
149*> LWORK is INTEGER
150*> The dimension of the array WORK. LWORK >= M-Q.
151*>
152*> If LWORK = -1, then a workspace query is assumed; the routine
153*> only calculates the optimal size of the WORK array, returns
154*> this value as the first entry of the WORK array, and no error
155*> message related to LWORK is issued by XERBLA.
156*> \endverbatim
157*>
158*> \param[out] INFO
159*> \verbatim
160*> INFO is INTEGER
161*> = 0: successful exit.
162*> < 0: if INFO = -i, the i-th argument had an illegal value.
163*> \endverbatim
164*
165* Authors:
166* ========
167*
168*> \author Univ. of Tennessee
169*> \author Univ. of California Berkeley
170*> \author Univ. of Colorado Denver
171*> \author NAG Ltd.
172*
173*> \ingroup unbdb3
174*
175*> \par Further Details:
176* =====================
177*>
178*> \verbatim
179*>
180*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
181*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
182*> in each bidiagonal band is a product of a sine or cosine of a THETA
183*> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
184*>
185*> P1, P2, and Q1 are represented as products of elementary reflectors.
186*> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
187*> and ZUNGLQ.
188*> \endverbatim
189*
190*> \par References:
191* ================
192*>
193*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
194*> Algorithms, 50(1):33-65, 2009.
195*>
196* =====================================================================
197 SUBROUTINE zunbdb3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
198 $ PHI,
199 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
200*
201* -- LAPACK computational routine --
202* -- LAPACK is a software package provided by Univ. of Tennessee, --
203* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
204*
205* .. Scalar Arguments ..
206 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
207* ..
208* .. Array Arguments ..
209 DOUBLE PRECISION PHI(*), THETA(*)
210 COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
211 $ x11(ldx11,*), x21(ldx21,*)
212* ..
213*
214* ====================================================================
215*
216* .. Parameters ..
217 COMPLEX*16 ONE
218 PARAMETER ( ONE = (1.0d0,0.0d0) )
219* ..
220* .. Local Scalars ..
221 DOUBLE PRECISION C, S
222 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
223 $ lworkmin, lworkopt
224 LOGICAL LQUERY
225* ..
226* .. External Subroutines ..
227 EXTERNAL zlarf1f, zlarfgp, zunbdb5, zdrot, zlacgv,
228 $ xerbla
229* ..
230* .. External Functions ..
231 DOUBLE PRECISION DZNRM2
232 EXTERNAL DZNRM2
233* ..
234* .. Intrinsic Function ..
235 INTRINSIC atan2, cos, max, sin, sqrt
236* ..
237* .. Executable Statements ..
238*
239* Test input arguments
240*
241 info = 0
242 lquery = lwork .EQ. -1
243*
244 IF( m .LT. 0 ) THEN
245 info = -1
246 ELSE IF( 2*p .LT. m .OR. p .GT. m ) THEN
247 info = -2
248 ELSE IF( q .LT. m-p .OR. m-q .LT. m-p ) THEN
249 info = -3
250 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
251 info = -5
252 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
253 info = -7
254 END IF
255*
256* Compute workspace
257*
258 IF( info .EQ. 0 ) THEN
259 ilarf = 2
260 llarf = max( p, m-p-1, q-1 )
261 iorbdb5 = 2
262 lorbdb5 = q-1
263 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
264 lworkmin = lworkopt
265 work(1) = lworkopt
266 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
267 info = -14
268 END IF
269 END IF
270 IF( info .NE. 0 ) THEN
271 CALL xerbla( 'ZUNBDB3', -info )
272 RETURN
273 ELSE IF( lquery ) THEN
274 RETURN
275 END IF
276*
277* Reduce rows 1, ..., M-P of X11 and X21
278*
279 DO i = 1, m-p
280*
281 IF( i .GT. 1 ) THEN
282 CALL zdrot( q-i+1, x11(i-1,i), ldx11, x21(i,i), ldx11, c,
283 $ s )
284 END IF
285*
286 CALL zlarfgp( q-i+1, x21(i,i), x21(i,i+1), ldx21, tauq1(i) )
287 s = dble( x21(i,i) )
288 CALL zlarf1f( 'R', p-i+1, q-i+1, x21(i,i), ldx21, tauq1(i),
289 $ x11(i,i), ldx11, work(ilarf) )
290 CALL zlarf1f( 'R', m-p-i, q-i+1, x21(i,i), ldx21, tauq1(i),
291 $ x21(i+1,i), ldx21, work(ilarf) )
292 CALL zlacgv( q-i+1, x21(i,i), ldx21 )
293 c = sqrt( dznrm2( p-i+1, x11(i,i), 1 )**2
294 $ + dznrm2( m-p-i, x21(i+1,i), 1 )**2 )
295 theta(i) = atan2( s, c )
296*
297 CALL zunbdb5( p-i+1, m-p-i, q-i, x11(i,i), 1, x21(i+1,i), 1,
298 $ x11(i,i+1), ldx11, x21(i+1,i+1), ldx21,
299 $ work(iorbdb5), lorbdb5, childinfo )
300 CALL zlarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
301 IF( i .LT. m-p ) THEN
302 CALL zlarfgp( m-p-i, x21(i+1,i), x21(i+2,i), 1,
303 $ taup2(i) )
304 phi(i) = atan2( dble( x21(i+1,i) ), dble( x11(i,i) ) )
305 c = cos( phi(i) )
306 s = sin( phi(i) )
307 CALL zlarf1f( 'L', m-p-i, q-i, x21(i+1,i), 1,
308 $ conjg(taup2(i)),
309 $ x21(i+1,i+1), ldx21, work(ilarf) )
310 END IF
311 CALL zlarf1f( 'L', p-i+1, q-i, x11(i,i), 1, conjg(taup1(i)),
312 $ x11(i,i+1), ldx11, work(ilarf) )
313 END DO
314*
315* Reduce the bottom-right portion of X11 to the identity matrix
316*
317 DO i = m-p + 1, q
318 CALL zlarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
319 CALL zlarf1f( 'L', p-i+1, q-i, x11(i,i), 1, conjg(taup1(i)),
320 $ x11(i,i+1), ldx11, work(ilarf) )
321 END DO
322*
323 RETURN
324*
325* End of ZUNBDB3
326*
327 END
328
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
subroutine zlarfgp(n, alpha, x, incx, tau)
ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition zlarfgp.f:102
subroutine zdrot(n, zx, incx, zy, incy, c, s)
ZDROT
Definition zdrot.f:98
subroutine zunbdb3(m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info)
ZUNBDB3
Definition zunbdb3.f:200
subroutine zunbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
ZUNBDB5
Definition zunbdb5.f:155