LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zunbdb1.f
Go to the documentation of this file.
1*> \brief \b ZUNBDB1
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZUNBDB1 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb1.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb1.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb1.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
26* ..
27* .. Array Arguments ..
28* DOUBLE PRECISION PHI(*), THETA(*)
29* COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
30* $ X11(LDX11,*), X21(LDX21,*)
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*>\verbatim
38*>
39*> ZUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
40*> matrix X with orthonormal columns:
41*>
42*> [ B11 ]
43*> [ X11 ] [ P1 | ] [ 0 ]
44*> [-----] = [---------] [-----] Q1**T .
45*> [ X21 ] [ | P2 ] [ B21 ]
46*> [ 0 ]
47*>
48*> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
49*> M-P, or M-Q. Routines ZUNBDB2, ZUNBDB3, and ZUNBDB4 handle cases in
50*> which Q is not the minimum dimension.
51*>
52*> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
53*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
54*> Householder vectors.
55*>
56*> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
57*> angles THETA, PHI.
58*>
59*>\endverbatim
60*
61* Arguments:
62* ==========
63*
64*> \param[in] M
65*> \verbatim
66*> M is INTEGER
67*> The number of rows X11 plus the number of rows in X21.
68*> \endverbatim
69*>
70*> \param[in] P
71*> \verbatim
72*> P is INTEGER
73*> The number of rows in X11. 0 <= P <= M.
74*> \endverbatim
75*>
76*> \param[in] Q
77*> \verbatim
78*> Q is INTEGER
79*> The number of columns in X11 and X21. 0 <= Q <=
80*> MIN(P,M-P,M-Q).
81*> \endverbatim
82*>
83*> \param[in,out] X11
84*> \verbatim
85*> X11 is COMPLEX*16 array, dimension (LDX11,Q)
86*> On entry, the top block of the matrix X to be reduced. On
87*> exit, the columns of tril(X11) specify reflectors for P1 and
88*> the rows of triu(X11,1) specify reflectors for Q1.
89*> \endverbatim
90*>
91*> \param[in] LDX11
92*> \verbatim
93*> LDX11 is INTEGER
94*> The leading dimension of X11. LDX11 >= P.
95*> \endverbatim
96*>
97*> \param[in,out] X21
98*> \verbatim
99*> X21 is COMPLEX*16 array, dimension (LDX21,Q)
100*> On entry, the bottom block of the matrix X to be reduced. On
101*> exit, the columns of tril(X21) specify reflectors for P2.
102*> \endverbatim
103*>
104*> \param[in] LDX21
105*> \verbatim
106*> LDX21 is INTEGER
107*> The leading dimension of X21. LDX21 >= M-P.
108*> \endverbatim
109*>
110*> \param[out] THETA
111*> \verbatim
112*> THETA is DOUBLE PRECISION array, dimension (Q)
113*> The entries of the bidiagonal blocks B11, B21 are defined by
114*> THETA and PHI. See Further Details.
115*> \endverbatim
116*>
117*> \param[out] PHI
118*> \verbatim
119*> PHI is DOUBLE PRECISION array, dimension (Q-1)
120*> The entries of the bidiagonal blocks B11, B21 are defined by
121*> THETA and PHI. See Further Details.
122*> \endverbatim
123*>
124*> \param[out] TAUP1
125*> \verbatim
126*> TAUP1 is COMPLEX*16 array, dimension (P)
127*> The scalar factors of the elementary reflectors that define
128*> P1.
129*> \endverbatim
130*>
131*> \param[out] TAUP2
132*> \verbatim
133*> TAUP2 is COMPLEX*16 array, dimension (M-P)
134*> The scalar factors of the elementary reflectors that define
135*> P2.
136*> \endverbatim
137*>
138*> \param[out] TAUQ1
139*> \verbatim
140*> TAUQ1 is COMPLEX*16 array, dimension (Q)
141*> The scalar factors of the elementary reflectors that define
142*> Q1.
143*> \endverbatim
144*>
145*> \param[out] WORK
146*> \verbatim
147*> WORK is COMPLEX*16 array, dimension (LWORK)
148*> \endverbatim
149*>
150*> \param[in] LWORK
151*> \verbatim
152*> LWORK is INTEGER
153*> The dimension of the array WORK. LWORK >= M-Q.
154*>
155*> If LWORK = -1, then a workspace query is assumed; the routine
156*> only calculates the optimal size of the WORK array, returns
157*> this value as the first entry of the WORK array, and no error
158*> message related to LWORK is issued by XERBLA.
159*> \endverbatim
160*>
161*> \param[out] INFO
162*> \verbatim
163*> INFO is INTEGER
164*> = 0: successful exit.
165*> < 0: if INFO = -i, the i-th argument had an illegal value.
166*> \endverbatim
167*>
168*
169* Authors:
170* ========
171*
172*> \author Univ. of Tennessee
173*> \author Univ. of California Berkeley
174*> \author Univ. of Colorado Denver
175*> \author NAG Ltd.
176*
177*> \ingroup unbdb1
178*
179*> \par Further Details:
180* =====================
181*>
182*> \verbatim
183*>
184*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
185*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
186*> in each bidiagonal band is a product of a sine or cosine of a THETA
187*> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
188*>
189*> P1, P2, and Q1 are represented as products of elementary reflectors.
190*> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
191*> and ZUNGLQ.
192*> \endverbatim
193*
194*> \par References:
195* ================
196*>
197*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
198*> Algorithms, 50(1):33-65, 2009.
199*>
200* =====================================================================
201 SUBROUTINE zunbdb1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
202 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
203*
204* -- LAPACK computational routine --
205* -- LAPACK is a software package provided by Univ. of Tennessee, --
206* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
207*
208* .. Scalar Arguments ..
209 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
210* ..
211* .. Array Arguments ..
212 DOUBLE PRECISION PHI(*), THETA(*)
213 COMPLEX*16 TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
214 $ x11(ldx11,*), x21(ldx21,*)
215* ..
216*
217* ====================================================================
218*
219* .. Parameters ..
220 COMPLEX*16 ONE
221 parameter( one = (1.0d0,0.0d0) )
222* ..
223* .. Local Scalars ..
224 DOUBLE PRECISION C, S
225 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
226 $ lworkmin, lworkopt
227 LOGICAL LQUERY
228* ..
229* .. External Subroutines ..
230 EXTERNAL zlarf, zlarfgp, zunbdb5, zdrot, xerbla
231 EXTERNAL zlacgv
232* ..
233* .. External Functions ..
234 DOUBLE PRECISION DZNRM2
235 EXTERNAL dznrm2
236* ..
237* .. Intrinsic Function ..
238 INTRINSIC atan2, cos, max, sin, sqrt
239* ..
240* .. Executable Statements ..
241*
242* Test input arguments
243*
244 info = 0
245 lquery = lwork .EQ. -1
246*
247 IF( m .LT. 0 ) THEN
248 info = -1
249 ELSE IF( p .LT. q .OR. m-p .LT. q ) THEN
250 info = -2
251 ELSE IF( q .LT. 0 .OR. m-q .LT. q ) THEN
252 info = -3
253 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
254 info = -5
255 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
256 info = -7
257 END IF
258*
259* Compute workspace
260*
261 IF( info .EQ. 0 ) THEN
262 ilarf = 2
263 llarf = max( p-1, m-p-1, q-1 )
264 iorbdb5 = 2
265 lorbdb5 = q-2
266 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
267 lworkmin = lworkopt
268 work(1) = lworkopt
269 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
270 info = -14
271 END IF
272 END IF
273 IF( info .NE. 0 ) THEN
274 CALL xerbla( 'ZUNBDB1', -info )
275 RETURN
276 ELSE IF( lquery ) THEN
277 RETURN
278 END IF
279*
280* Reduce columns 1, ..., Q of X11 and X21
281*
282 DO i = 1, q
283*
284 CALL zlarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
285 CALL zlarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
286 theta(i) = atan2( dble( x21(i,i) ), dble( x11(i,i) ) )
287 c = cos( theta(i) )
288 s = sin( theta(i) )
289 x11(i,i) = one
290 x21(i,i) = one
291 CALL zlarf( 'L', p-i+1, q-i, x11(i,i), 1, dconjg(taup1(i)),
292 $ x11(i,i+1), ldx11, work(ilarf) )
293 CALL zlarf( 'L', m-p-i+1, q-i, x21(i,i), 1, dconjg(taup2(i)),
294 $ x21(i,i+1), ldx21, work(ilarf) )
295*
296 IF( i .LT. q ) THEN
297 CALL zdrot( q-i, x11(i,i+1), ldx11, x21(i,i+1), ldx21, c,
298 $ s )
299 CALL zlacgv( q-i, x21(i,i+1), ldx21 )
300 CALL zlarfgp( q-i, x21(i,i+1), x21(i,i+2), ldx21, tauq1(i) )
301 s = dble( x21(i,i+1) )
302 x21(i,i+1) = one
303 CALL zlarf( 'R', p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
304 $ x11(i+1,i+1), ldx11, work(ilarf) )
305 CALL zlarf( 'R', m-p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
306 $ x21(i+1,i+1), ldx21, work(ilarf) )
307 CALL zlacgv( q-i, x21(i,i+1), ldx21 )
308 c = sqrt( dznrm2( p-i, x11(i+1,i+1), 1 )**2
309 $ + dznrm2( m-p-i, x21(i+1,i+1), 1 )**2 )
310 phi(i) = atan2( s, c )
311 CALL zunbdb5( p-i, m-p-i, q-i-1, x11(i+1,i+1), 1,
312 $ x21(i+1,i+1), 1, x11(i+1,i+2), ldx11,
313 $ x21(i+1,i+2), ldx21, work(iorbdb5), lorbdb5,
314 $ childinfo )
315 END IF
316*
317 END DO
318*
319 RETURN
320*
321* End of ZUNBDB1
322*
323 END
324
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:74
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition zlarf.f:128
subroutine zlarfgp(n, alpha, x, incx, tau)
ZLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition zlarfgp.f:104
subroutine zdrot(n, zx, incx, zy, incy, c, s)
ZDROT
Definition zdrot.f:98
subroutine zunbdb1(m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info)
ZUNBDB1
Definition zunbdb1.f:203
subroutine zunbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
ZUNBDB5
Definition zunbdb5.f:156