LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cpptri.f
Go to the documentation of this file.
1 *> \brief \b CPPTRI
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CPPTRI + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpptri.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpptri.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpptri.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER UPLO
25 * INTEGER INFO, N
26 * ..
27 * .. Array Arguments ..
28 * COMPLEX AP( * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> CPPTRI computes the inverse of a complex Hermitian positive definite
38 *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
39 *> computed by CPPTRF.
40 *> \endverbatim
41 *
42 * Arguments:
43 * ==========
44 *
45 *> \param[in] UPLO
46 *> \verbatim
47 *> UPLO is CHARACTER*1
48 *> = 'U': Upper triangular factor is stored in AP;
49 *> = 'L': Lower triangular factor is stored in AP.
50 *> \endverbatim
51 *>
52 *> \param[in] N
53 *> \verbatim
54 *> N is INTEGER
55 *> The order of the matrix A. N >= 0.
56 *> \endverbatim
57 *>
58 *> \param[in,out] AP
59 *> \verbatim
60 *> AP is COMPLEX array, dimension (N*(N+1)/2)
61 *> On entry, the triangular factor U or L from the Cholesky
62 *> factorization A = U**H*U or A = L*L**H, packed columnwise as
63 *> a linear array. The j-th column of U or L is stored in the
64 *> array AP as follows:
65 *> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
66 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
67 *>
68 *> On exit, the upper or lower triangle of the (Hermitian)
69 *> inverse of A, overwriting the input factor U or L.
70 *> \endverbatim
71 *>
72 *> \param[out] INFO
73 *> \verbatim
74 *> INFO is INTEGER
75 *> = 0: successful exit
76 *> < 0: if INFO = -i, the i-th argument had an illegal value
77 *> > 0: if INFO = i, the (i,i) element of the factor U or L is
78 *> zero, and the inverse could not be computed.
79 *> \endverbatim
80 *
81 * Authors:
82 * ========
83 *
84 *> \author Univ. of Tennessee
85 *> \author Univ. of California Berkeley
86 *> \author Univ. of Colorado Denver
87 *> \author NAG Ltd.
88 *
89 *> \date November 2011
90 *
91 *> \ingroup complexOTHERcomputational
92 *
93 * =====================================================================
94  SUBROUTINE cpptri( UPLO, N, AP, INFO )
95 *
96 * -- LAPACK computational routine (version 3.4.0) --
97 * -- LAPACK is a software package provided by Univ. of Tennessee, --
98 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
99 * November 2011
100 *
101 * .. Scalar Arguments ..
102  CHARACTER UPLO
103  INTEGER INFO, N
104 * ..
105 * .. Array Arguments ..
106  COMPLEX AP( * )
107 * ..
108 *
109 * =====================================================================
110 *
111 * .. Parameters ..
112  REAL ONE
113  parameter ( one = 1.0e+0 )
114 * ..
115 * .. Local Scalars ..
116  LOGICAL UPPER
117  INTEGER J, JC, JJ, JJN
118  REAL AJJ
119 * ..
120 * .. External Functions ..
121  LOGICAL LSAME
122  COMPLEX CDOTC
123  EXTERNAL lsame, cdotc
124 * ..
125 * .. External Subroutines ..
126  EXTERNAL chpr, csscal, ctpmv, ctptri, xerbla
127 * ..
128 * .. Intrinsic Functions ..
129  INTRINSIC real
130 * ..
131 * .. Executable Statements ..
132 *
133 * Test the input parameters.
134 *
135  info = 0
136  upper = lsame( uplo, 'U' )
137  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
138  info = -1
139  ELSE IF( n.LT.0 ) THEN
140  info = -2
141  END IF
142  IF( info.NE.0 ) THEN
143  CALL xerbla( 'CPPTRI', -info )
144  RETURN
145  END IF
146 *
147 * Quick return if possible
148 *
149  IF( n.EQ.0 )
150  $ RETURN
151 *
152 * Invert the triangular Cholesky factor U or L.
153 *
154  CALL ctptri( uplo, 'Non-unit', n, ap, info )
155  IF( info.GT.0 )
156  $ RETURN
157  IF( upper ) THEN
158 *
159 * Compute the product inv(U) * inv(U)**H.
160 *
161  jj = 0
162  DO 10 j = 1, n
163  jc = jj + 1
164  jj = jj + j
165  IF( j.GT.1 )
166  $ CALL chpr( 'Upper', j-1, one, ap( jc ), 1, ap )
167  ajj = ap( jj )
168  CALL csscal( j, ajj, ap( jc ), 1 )
169  10 CONTINUE
170 *
171  ELSE
172 *
173 * Compute the product inv(L)**H * inv(L).
174 *
175  jj = 1
176  DO 20 j = 1, n
177  jjn = jj + n - j + 1
178  ap( jj ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
179  IF( j.LT.n )
180  $ CALL ctpmv( 'Lower', 'Conjugate transpose', 'Non-unit',
181  $ n-j, ap( jjn ), ap( jj+1 ), 1 )
182  jj = jjn
183  20 CONTINUE
184  END IF
185 *
186  RETURN
187 *
188 * End of CPPTRI
189 *
190  END
subroutine ctpmv(UPLO, TRANS, DIAG, N, AP, X, INCX)
CTPMV
Definition: ctpmv.f:144
subroutine ctptri(UPLO, DIAG, N, AP, INFO)
CTPTRI
Definition: ctptri.f:119
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine chpr(UPLO, N, ALPHA, X, INCX, AP)
CHPR
Definition: chpr.f:132
subroutine cpptri(UPLO, N, AP, INFO)
CPPTRI
Definition: cpptri.f:95
subroutine csscal(N, SA, CX, INCX)
CSSCAL
Definition: csscal.f:54