LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
sbdt01.f
Go to the documentation of this file.
1 *> \brief \b SBDT01
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
12 * RESID )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER KD, LDA, LDPT, LDQ, M, N
16 * REAL RESID
17 * ..
18 * .. Array Arguments ..
19 * REAL A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
20 * $ Q( LDQ, * ), WORK( * )
21 * ..
22 *
23 *
24 *> \par Purpose:
25 * =============
26 *>
27 *> \verbatim
28 *>
29 *> SBDT01 reconstructs a general matrix A from its bidiagonal form
30 *> A = Q * B * P'
31 *> where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
32 *> matrices and B is bidiagonal.
33 *>
34 *> The test ratio to test the reduction is
35 *> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
36 *> where PT = P' and EPS is the machine precision.
37 *> \endverbatim
38 *
39 * Arguments:
40 * ==========
41 *
42 *> \param[in] M
43 *> \verbatim
44 *> M is INTEGER
45 *> The number of rows of the matrices A and Q.
46 *> \endverbatim
47 *>
48 *> \param[in] N
49 *> \verbatim
50 *> N is INTEGER
51 *> The number of columns of the matrices A and P'.
52 *> \endverbatim
53 *>
54 *> \param[in] KD
55 *> \verbatim
56 *> KD is INTEGER
57 *> If KD = 0, B is diagonal and the array E is not referenced.
58 *> If KD = 1, the reduction was performed by xGEBRD; B is upper
59 *> bidiagonal if M >= N, and lower bidiagonal if M < N.
60 *> If KD = -1, the reduction was performed by xGBBRD; B is
61 *> always upper bidiagonal.
62 *> \endverbatim
63 *>
64 *> \param[in] A
65 *> \verbatim
66 *> A is REAL array, dimension (LDA,N)
67 *> The m by n matrix A.
68 *> \endverbatim
69 *>
70 *> \param[in] LDA
71 *> \verbatim
72 *> LDA is INTEGER
73 *> The leading dimension of the array A. LDA >= max(1,M).
74 *> \endverbatim
75 *>
76 *> \param[in] Q
77 *> \verbatim
78 *> Q is REAL array, dimension (LDQ,N)
79 *> The m by min(m,n) orthogonal matrix Q in the reduction
80 *> A = Q * B * P'.
81 *> \endverbatim
82 *>
83 *> \param[in] LDQ
84 *> \verbatim
85 *> LDQ is INTEGER
86 *> The leading dimension of the array Q. LDQ >= max(1,M).
87 *> \endverbatim
88 *>
89 *> \param[in] D
90 *> \verbatim
91 *> D is REAL array, dimension (min(M,N))
92 *> The diagonal elements of the bidiagonal matrix B.
93 *> \endverbatim
94 *>
95 *> \param[in] E
96 *> \verbatim
97 *> E is REAL array, dimension (min(M,N)-1)
98 *> The superdiagonal elements of the bidiagonal matrix B if
99 *> m >= n, or the subdiagonal elements of B if m < n.
100 *> \endverbatim
101 *>
102 *> \param[in] PT
103 *> \verbatim
104 *> PT is REAL array, dimension (LDPT,N)
105 *> The min(m,n) by n orthogonal matrix P' in the reduction
106 *> A = Q * B * P'.
107 *> \endverbatim
108 *>
109 *> \param[in] LDPT
110 *> \verbatim
111 *> LDPT is INTEGER
112 *> The leading dimension of the array PT.
113 *> LDPT >= max(1,min(M,N)).
114 *> \endverbatim
115 *>
116 *> \param[out] WORK
117 *> \verbatim
118 *> WORK is REAL array, dimension (M+N)
119 *> \endverbatim
120 *>
121 *> \param[out] RESID
122 *> \verbatim
123 *> RESID is REAL
124 *> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
125 *> \endverbatim
126 *
127 * Authors:
128 * ========
129 *
130 *> \author Univ. of Tennessee
131 *> \author Univ. of California Berkeley
132 *> \author Univ. of Colorado Denver
133 *> \author NAG Ltd.
134 *
135 *> \date November 2011
136 *
137 *> \ingroup single_eig
138 *
139 * =====================================================================
140  SUBROUTINE sbdt01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
141  $ resid )
142 *
143 * -- LAPACK test routine (version 3.4.0) --
144 * -- LAPACK is a software package provided by Univ. of Tennessee, --
145 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
146 * November 2011
147 *
148 * .. Scalar Arguments ..
149  INTEGER KD, LDA, LDPT, LDQ, M, N
150  REAL RESID
151 * ..
152 * .. Array Arguments ..
153  REAL A( lda, * ), D( * ), E( * ), PT( ldpt, * ),
154  $ q( ldq, * ), work( * )
155 * ..
156 *
157 * =====================================================================
158 *
159 * .. Parameters ..
160  REAL ZERO, ONE
161  parameter ( zero = 0.0e+0, one = 1.0e+0 )
162 * ..
163 * .. Local Scalars ..
164  INTEGER I, J
165  REAL ANORM, EPS
166 * ..
167 * .. External Functions ..
168  REAL SASUM, SLAMCH, SLANGE
169  EXTERNAL sasum, slamch, slange
170 * ..
171 * .. External Subroutines ..
172  EXTERNAL scopy, sgemv
173 * ..
174 * .. Intrinsic Functions ..
175  INTRINSIC max, min, real
176 * ..
177 * .. Executable Statements ..
178 *
179 * Quick return if possible
180 *
181  IF( m.LE.0 .OR. n.LE.0 ) THEN
182  resid = zero
183  RETURN
184  END IF
185 *
186 * Compute A - Q * B * P' one column at a time.
187 *
188  resid = zero
189  IF( kd.NE.0 ) THEN
190 *
191 * B is bidiagonal.
192 *
193  IF( kd.NE.0 .AND. m.GE.n ) THEN
194 *
195 * B is upper bidiagonal and M >= N.
196 *
197  DO 20 j = 1, n
198  CALL scopy( m, a( 1, j ), 1, work, 1 )
199  DO 10 i = 1, n - 1
200  work( m+i ) = d( i )*pt( i, j ) + e( i )*pt( i+1, j )
201  10 CONTINUE
202  work( m+n ) = d( n )*pt( n, j )
203  CALL sgemv( 'No transpose', m, n, -one, q, ldq,
204  $ work( m+1 ), 1, one, work, 1 )
205  resid = max( resid, sasum( m, work, 1 ) )
206  20 CONTINUE
207  ELSE IF( kd.LT.0 ) THEN
208 *
209 * B is upper bidiagonal and M < N.
210 *
211  DO 40 j = 1, n
212  CALL scopy( m, a( 1, j ), 1, work, 1 )
213  DO 30 i = 1, m - 1
214  work( m+i ) = d( i )*pt( i, j ) + e( i )*pt( i+1, j )
215  30 CONTINUE
216  work( m+m ) = d( m )*pt( m, j )
217  CALL sgemv( 'No transpose', m, m, -one, q, ldq,
218  $ work( m+1 ), 1, one, work, 1 )
219  resid = max( resid, sasum( m, work, 1 ) )
220  40 CONTINUE
221  ELSE
222 *
223 * B is lower bidiagonal.
224 *
225  DO 60 j = 1, n
226  CALL scopy( m, a( 1, j ), 1, work, 1 )
227  work( m+1 ) = d( 1 )*pt( 1, j )
228  DO 50 i = 2, m
229  work( m+i ) = e( i-1 )*pt( i-1, j ) +
230  $ d( i )*pt( i, j )
231  50 CONTINUE
232  CALL sgemv( 'No transpose', m, m, -one, q, ldq,
233  $ work( m+1 ), 1, one, work, 1 )
234  resid = max( resid, sasum( m, work, 1 ) )
235  60 CONTINUE
236  END IF
237  ELSE
238 *
239 * B is diagonal.
240 *
241  IF( m.GE.n ) THEN
242  DO 80 j = 1, n
243  CALL scopy( m, a( 1, j ), 1, work, 1 )
244  DO 70 i = 1, n
245  work( m+i ) = d( i )*pt( i, j )
246  70 CONTINUE
247  CALL sgemv( 'No transpose', m, n, -one, q, ldq,
248  $ work( m+1 ), 1, one, work, 1 )
249  resid = max( resid, sasum( m, work, 1 ) )
250  80 CONTINUE
251  ELSE
252  DO 100 j = 1, n
253  CALL scopy( m, a( 1, j ), 1, work, 1 )
254  DO 90 i = 1, m
255  work( m+i ) = d( i )*pt( i, j )
256  90 CONTINUE
257  CALL sgemv( 'No transpose', m, m, -one, q, ldq,
258  $ work( m+1 ), 1, one, work, 1 )
259  resid = max( resid, sasum( m, work, 1 ) )
260  100 CONTINUE
261  END IF
262  END IF
263 *
264 * Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
265 *
266  anorm = slange( '1', m, n, a, lda, work )
267  eps = slamch( 'Precision' )
268 *
269  IF( anorm.LE.zero ) THEN
270  IF( resid.NE.zero )
271  $ resid = one / eps
272  ELSE
273  IF( anorm.GE.resid ) THEN
274  resid = ( resid / anorm ) / ( REAL( n )*EPS )
275  ELSE
276  IF( anorm.LT.one ) THEN
277  resid = ( min( resid, REAL( n )*ANORM ) / anorm ) /
278  $ ( REAL( n )*EPS )
279  ELSE
280  resid = min( resid / anorm, REAL( N ) ) /
281  $ ( REAL( n )*EPS )
282  END IF
283  END IF
284  END IF
285 *
286  RETURN
287 *
288 * End of SBDT01
289 *
290  END
subroutine sgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV
Definition: sgemv.f:158
subroutine sbdt01(M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK, RESID)
SBDT01
Definition: sbdt01.f:142
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53