LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
lapacke_ztp_trans.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 ******************************************************************************
29 * Contents: Native C interface to LAPACK utility function
30 * Author: Intel Corporation
31 * Created in February, 2010
32 *****************************************************************************/
33 
34 #include "lapacke_utils.h"
35 
36 /* Converts input triangular packed matrix from row-major(C) to
37  * column-major(Fortran) layout or vice versa.
38  */
39 
40 void LAPACKE_ztp_trans( int matrix_layout, char uplo, char diag,
41  lapack_int n, const lapack_complex_double *in,
43 {
44  lapack_int i, j, st;
45  lapack_logical colmaj, upper, unit;
46 
47  if( in == NULL || out == NULL ) return ;
48 
49  colmaj = ( matrix_layout == LAPACK_COL_MAJOR );
50  upper = LAPACKE_lsame( uplo, 'u' );
51  unit = LAPACKE_lsame( diag, 'u' );
52 
53  if( ( !colmaj && ( matrix_layout != LAPACK_ROW_MAJOR ) ) ||
54  ( !upper && !LAPACKE_lsame( uplo, 'l' ) ) ||
55  ( !unit && !LAPACKE_lsame( diag, 'n' ) ) ) {
56  /* Just exit if any of input parameters are wrong */
57  return;
58  }
59  if( unit ) {
60  /* If unit, then don't touch diagonal, start from 1st column or row */
61  st = 1;
62  } else {
63  /* If non-unit, then check diagonal also, starting from [0,0] */
64  st = 0;
65  }
66 
67  /* Perform conversion:
68  * Since col_major upper and row_major lower are equal,
69  * and col_major lower and row_major upper are equals too -
70  * using one code for equal cases. XOR( colmaj, upper )
71  */
72  if( ( colmaj || upper ) && !( colmaj && upper ) ) {
73  for( j = st; j < n; j++ ) {
74  for( i = 0; i < j+1-st; i++ ) {
75  out[ j-i + (i*(2*n-i+1))/2 ] = in[ ((j+1)*j)/2 + i ];
76  }
77  }
78  } else {
79  for( j = 0; j < n-st; j++ ) {
80  for( i = j+st; i < n; i++ ) {
81  out[ j + ((i+1)*i)/2 ] = in[ (j*(2*n-j+1))/2 + i-j ];
82  }
83  }
84  }
85 }
#define lapack_logical
Definition: lapacke.h:51
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
#define lapack_complex_double
Definition: lapacke.h:90
void LAPACKE_ztp_trans(int matrix_layout, char uplo, char diag, lapack_int n, const lapack_complex_double *in, lapack_complex_double *out)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
#define lapack_int
Definition: lapacke.h:47