LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
derrsyx.f
Go to the documentation of this file.
1 *> \brief \b DERRSYX
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DERRSY( PATH, NUNIT )
12 *
13 * .. Scalar Arguments ..
14 * CHARACTER*3 PATH
15 * INTEGER NUNIT
16 * ..
17 *
18 *
19 *> \par Purpose:
20 * =============
21 *>
22 *> \verbatim
23 *>
24 *> DERRSY tests the error exits for the DOUBLE PRECISION routines
25 *> for symmetric indefinite matrices.
26 *>
27 *> Note that this file is used only when the XBLAS are available,
28 *> otherwise derrsy.f defines this subroutine.
29 *> \endverbatim
30 *
31 * Arguments:
32 * ==========
33 *
34 *> \param[in] PATH
35 *> \verbatim
36 *> PATH is CHARACTER*3
37 *> The LAPACK path name for the routines to be tested.
38 *> \endverbatim
39 *>
40 *> \param[in] NUNIT
41 *> \verbatim
42 *> NUNIT is INTEGER
43 *> The unit number for output.
44 *> \endverbatim
45 *
46 * Authors:
47 * ========
48 *
49 *> \author Univ. of Tennessee
50 *> \author Univ. of California Berkeley
51 *> \author Univ. of Colorado Denver
52 *> \author NAG Ltd.
53 *
54 *> \date November 2015
55 *
56 *> \ingroup double_lin
57 *
58 * =====================================================================
59  SUBROUTINE derrsy( PATH, NUNIT )
60 *
61 * -- LAPACK test routine (version 3.6.0) --
62 * -- LAPACK is a software package provided by Univ. of Tennessee, --
63 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
64 * November 2015
65 *
66 * .. Scalar Arguments ..
67  CHARACTER*3 path
68  INTEGER nunit
69 * ..
70 *
71 * =====================================================================
72 *
73 * .. Parameters ..
74  INTEGER nmax
75  parameter ( nmax = 4 )
76 * ..
77 * .. Local Scalars ..
78  CHARACTER eq
79  CHARACTER*2 c2
80  INTEGER i, info, j, n_err_bnds, nparams
81  DOUBLE PRECISION anrm, rcond, berr
82 * ..
83 * .. Local Arrays ..
84  INTEGER ip( nmax ), iw( nmax )
85  DOUBLE PRECISION a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
86  $ r1( nmax ), r2( nmax ), w( 3*nmax ), x( nmax ),
87  $ s( nmax ), err_bnds_n( nmax, 3 ),
88  $ err_bnds_c( nmax, 3 ), params( 1 )
89 * ..
90 * .. External Functions ..
91  LOGICAL lsamen
92  EXTERNAL lsamen
93 * ..
94 * .. External Subroutines ..
95  EXTERNAL alaesm, chkxer, dspcon, dsycon_rook, dsprfs,
99  $ dsyrfsx
100 * ..
101 * .. Scalars in Common ..
102  LOGICAL lerr, ok
103  CHARACTER*32 srnamt
104  INTEGER infot, nout
105 * ..
106 * .. Common blocks ..
107  COMMON / infoc / infot, nout, ok, lerr
108  COMMON / srnamc / srnamt
109 * ..
110 * .. Intrinsic Functions ..
111  INTRINSIC dble
112 * ..
113 * .. Executable Statements ..
114 *
115  nout = nunit
116  WRITE( nout, fmt = * )
117  c2 = path( 2: 3 )
118 *
119 * Set the variables to innocuous values.
120 *
121  DO 20 j = 1, nmax
122  DO 10 i = 1, nmax
123  a( i, j ) = 1.d0 / dble( i+j )
124  af( i, j ) = 1.d0 / dble( i+j )
125  10 CONTINUE
126  b( j ) = 0.d0
127  r1( j ) = 0.d0
128  r2( j ) = 0.d0
129  w( j ) = 0.d0
130  x( j ) = 0.d0
131  s( j ) = 0.d0
132  ip( j ) = j
133  iw( j ) = j
134  20 CONTINUE
135  anrm = 1.0d0
136  rcond = 1.0d0
137  ok = .true.
138 *
139  IF( lsamen( 2, c2, 'SY' ) ) THEN
140 *
141 * Test error exits of the routines that use factorization
142 * of a symmetric indefinite matrix with patrial
143 * (Bunch-Kaufman) pivoting.
144 *
145 * DSYTRF
146 *
147  srnamt = 'DSYTRF'
148  infot = 1
149  CALL dsytrf( '/', 0, a, 1, ip, w, 1, info )
150  CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
151  infot = 2
152  CALL dsytrf( 'U', -1, a, 1, ip, w, 1, info )
153  CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
154  infot = 4
155  CALL dsytrf( 'U', 2, a, 1, ip, w, 4, info )
156  CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
157 *
158 * DSYTF2
159 *
160  srnamt = 'DSYTF2'
161  infot = 1
162  CALL dsytf2( '/', 0, a, 1, ip, info )
163  CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
164  infot = 2
165  CALL dsytf2( 'U', -1, a, 1, ip, info )
166  CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
167  infot = 4
168  CALL dsytf2( 'U', 2, a, 1, ip, info )
169  CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
170 *
171 * DSYTRI
172 *
173  srnamt = 'DSYTRI'
174  infot = 1
175  CALL dsytri( '/', 0, a, 1, ip, w, info )
176  CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
177  infot = 2
178  CALL dsytri( 'U', -1, a, 1, ip, w, info )
179  CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
180  infot = 4
181  CALL dsytri( 'U', 2, a, 1, ip, w, info )
182  CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
183 *
184 * DSYTRI2
185 *
186  srnamt = 'DSYTRI2'
187  infot = 1
188  CALL dsytri2( '/', 0, a, 1, ip, w, iw, info )
189  CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
190  infot = 2
191  CALL dsytri2( 'U', -1, a, 1, ip, w, iw, info )
192  CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
193  infot = 4
194  CALL dsytri2( 'U', 2, a, 1, ip, w, iw, info )
195  CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
196 *
197 * DSYTRS
198 *
199  srnamt = 'DSYTRS'
200  infot = 1
201  CALL dsytrs( '/', 0, 0, a, 1, ip, b, 1, info )
202  CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
203  infot = 2
204  CALL dsytrs( 'U', -1, 0, a, 1, ip, b, 1, info )
205  CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
206  infot = 3
207  CALL dsytrs( 'U', 0, -1, a, 1, ip, b, 1, info )
208  CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
209  infot = 5
210  CALL dsytrs( 'U', 2, 1, a, 1, ip, b, 2, info )
211  CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
212  infot = 8
213  CALL dsytrs( 'U', 2, 1, a, 2, ip, b, 1, info )
214  CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
215 *
216 * DSYRFS
217 *
218  srnamt = 'DSYRFS'
219  infot = 1
220  CALL dsyrfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
221  $ iw, info )
222  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
223  infot = 2
224  CALL dsyrfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
225  $ w, iw, info )
226  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
227  infot = 3
228  CALL dsyrfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
229  $ w, iw, info )
230  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
231  infot = 5
232  CALL dsyrfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
233  $ iw, info )
234  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
235  infot = 7
236  CALL dsyrfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
237  $ iw, info )
238  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
239  infot = 10
240  CALL dsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
241  $ iw, info )
242  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
243  infot = 12
244  CALL dsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
245  $ iw, info )
246  CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
247 *
248 * DSYRFSX
249 *
250  n_err_bnds = 3
251  nparams = 0
252  srnamt = 'DSYRFSX'
253  infot = 1
254  CALL dsyrfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
255  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
256  $ params, w, iw, info )
257  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
258  infot = 2
259  CALL dsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
260  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
261  $ params, w, iw, info )
262  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
263  eq = 'N'
264  infot = 3
265  CALL dsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
266  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
267  $ params, w, iw, info )
268  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
269  infot = 4
270  CALL dsyrfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
271  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
272  $ params, w, iw, info )
273  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
274  infot = 6
275  CALL dsyrfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
276  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
277  $ params, w, iw, info )
278  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
279  infot = 8
280  CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
281  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
282  $ params, w, iw, info )
283  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
284  infot = 12
285  CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
286  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
287  $ params, w, iw, info )
288  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
289  infot = 14
290  CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
291  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
292  $ params, w, iw, info )
293  CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
294 *
295 * DSYCON
296 *
297  srnamt = 'DSYCON'
298  infot = 1
299  CALL dsycon( '/', 0, a, 1, ip, anrm, rcond, w, iw, info )
300  CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
301  infot = 2
302  CALL dsycon( 'U', -1, a, 1, ip, anrm, rcond, w, iw, info )
303  CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
304  infot = 4
305  CALL dsycon( 'U', 2, a, 1, ip, anrm, rcond, w, iw, info )
306  CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
307  infot = 6
308  CALL dsycon( 'U', 1, a, 1, ip, -1.0d0, rcond, w, iw, info )
309  CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
310 *
311  ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
312 *
313 * Test error exits of the routines that use factorization
314 * of a symmetric indefinite matrix with rook
315 * (bounded Bunch-Kaufman) pivoting.
316 *
317 * DSYTRF_ROOK
318 *
319  srnamt = 'DSYTRF_ROOK'
320  infot = 1
321  CALL dsytrf_rook( '/', 0, a, 1, ip, w, 1, info )
322  CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
323  infot = 2
324  CALL dsytrf_rook( 'U', -1, a, 1, ip, w, 1, info )
325  CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
326  infot = 4
327  CALL dsytrf_rook( 'U', 2, a, 1, ip, w, 4, info )
328  CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
329 *
330 * DSYTF2_ROOK
331 *
332  srnamt = 'DSYTF2_ROOK'
333  infot = 1
334  CALL dsytf2_rook( '/', 0, a, 1, ip, info )
335  CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
336  infot = 2
337  CALL dsytf2_rook( 'U', -1, a, 1, ip, info )
338  CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
339  infot = 4
340  CALL dsytf2_rook( 'U', 2, a, 1, ip, info )
341  CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
342 *
343 * DSYTRI_ROOK
344 *
345  srnamt = 'DSYTRI_ROOK'
346  infot = 1
347  CALL dsytri_rook( '/', 0, a, 1, ip, w, info )
348  CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
349  infot = 2
350  CALL dsytri_rook( 'U', -1, a, 1, ip, w, info )
351  CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
352  infot = 4
353  CALL dsytri_rook( 'U', 2, a, 1, ip, w, info )
354  CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
355 *
356 * DSYTRS_ROOK
357 *
358  srnamt = 'DSYTRS_ROOK'
359  infot = 1
360  CALL dsytrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
361  CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
362  infot = 2
363  CALL dsytrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
364  CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
365  infot = 3
366  CALL dsytrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
367  CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
368  infot = 5
369  CALL dsytrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
370  CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
371  infot = 8
372  CALL dsytrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
373  CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
374 *
375 * DSYCON_ROOK
376 *
377  srnamt = 'DSYCON_ROOK'
378  infot = 1
379  CALL dsycon_rook( '/', 0, a, 1, ip, anrm, rcond, w, iw, info )
380  CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
381  infot = 2
382  CALL dsycon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, iw, info )
383  CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
384  infot = 4
385  CALL dsycon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, iw, info )
386  CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
387  infot = 6
388  CALL dsycon_rook( 'U', 1, a, 1, ip, -1.0d0, rcond, w, iw, info)
389  CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
390 *
391  ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
392 *
393 * Test error exits of the routines that use factorization
394 * of a symmetric indefinite packed matrix with patrial
395 * (Bunch-Kaufman) pivoting.
396 *
397 * DSPTRF
398 *
399  srnamt = 'DSPTRF'
400  infot = 1
401  CALL dsptrf( '/', 0, a, ip, info )
402  CALL chkxer( 'DSPTRF', infot, nout, lerr, ok )
403  infot = 2
404  CALL dsptrf( 'U', -1, a, ip, info )
405  CALL chkxer( 'DSPTRF', infot, nout, lerr, ok )
406 *
407 * DSPTRI
408 *
409  srnamt = 'DSPTRI'
410  infot = 1
411  CALL dsptri( '/', 0, a, ip, w, info )
412  CALL chkxer( 'DSPTRI', infot, nout, lerr, ok )
413  infot = 2
414  CALL dsptri( 'U', -1, a, ip, w, info )
415  CALL chkxer( 'DSPTRI', infot, nout, lerr, ok )
416 *
417 * DSPTRS
418 *
419  srnamt = 'DSPTRS'
420  infot = 1
421  CALL dsptrs( '/', 0, 0, a, ip, b, 1, info )
422  CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
423  infot = 2
424  CALL dsptrs( 'U', -1, 0, a, ip, b, 1, info )
425  CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
426  infot = 3
427  CALL dsptrs( 'U', 0, -1, a, ip, b, 1, info )
428  CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
429  infot = 7
430  CALL dsptrs( 'U', 2, 1, a, ip, b, 1, info )
431  CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
432 *
433 * DSPRFS
434 *
435  srnamt = 'DSPRFS'
436  infot = 1
437  CALL dsprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
438  $ info )
439  CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
440  infot = 2
441  CALL dsprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
442  $ info )
443  CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
444  infot = 3
445  CALL dsprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
446  $ info )
447  CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
448  infot = 8
449  CALL dsprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, iw,
450  $ info )
451  CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
452  infot = 10
453  CALL dsprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, iw,
454  $ info )
455  CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
456 *
457 * DSPCON
458 *
459  srnamt = 'DSPCON'
460  infot = 1
461  CALL dspcon( '/', 0, a, ip, anrm, rcond, w, iw, info )
462  CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
463  infot = 2
464  CALL dspcon( 'U', -1, a, ip, anrm, rcond, w, iw, info )
465  CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
466  infot = 5
467  CALL dspcon( 'U', 1, a, ip, -1.0d0, rcond, w, iw, info )
468  CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
469  END IF
470 *
471 * Print a summary line.
472 *
473  CALL alaesm( path, ok, nout )
474 *
475  RETURN
476 *
477 * End of DERRSY
478 *
479  END
subroutine dsytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DSYTRS_ROOK
Definition: dsytrs_rook.f:138
subroutine dsptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
DSPTRS
Definition: dsptrs.f:117
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine dsyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DSYRFS
Definition: dsyrfs.f:193
subroutine dsytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
DSYTRI2
Definition: dsytri2.f:129
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine dsytf2(UPLO, N, A, LDA, IPIV, INFO)
DSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition: dsytf2.f:196
subroutine dsytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
DSYTRI_ROOK
Definition: dsytri_rook.f:131
subroutine dsytri(UPLO, N, A, LDA, IPIV, WORK, INFO)
DSYTRI
Definition: dsytri.f:116
subroutine dsprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DSPRFS
Definition: dsprfs.f:181
subroutine dsptri(UPLO, N, AP, IPIV, WORK, INFO)
DSPTRI
Definition: dsptri.f:111
subroutine dsycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSYCON
Definition: dsycon.f:132
subroutine dsycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSYCON_ROOK
Definition: dsycon_rook.f:146
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine dspcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DSPCON
Definition: dspcon.f:127
subroutine dsyrfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO)
DSYRFSX
Definition: dsyrfsx.f:404
subroutine dsytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DSYTRS
Definition: dsytrs.f:122
subroutine dsytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
DSYTRF
Definition: dsytrf.f:184
subroutine derrsy(PATH, NUNIT)
DERRSY
Definition: derrsy.f:57
subroutine dsptrf(UPLO, N, AP, IPIV, INFO)
DSPTRF
Definition: dsptrf.f:161
subroutine dsytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
DSYTRF_ROOK
Definition: dsytrf_rook.f:210
subroutine dsytf2_rook(UPLO, N, A, LDA, IPIV, INFO)
DSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-...
Definition: dsytf2_rook.f:196