LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
dsyrfs.f
Go to the documentation of this file.
1 *> \brief \b DSYRFS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download DSYRFS + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyrfs.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyrfs.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyrfs.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
22 * X, LDX, FERR, BERR, WORK, IWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER UPLO
26 * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
27 * ..
28 * .. Array Arguments ..
29 * INTEGER IPIV( * ), IWORK( * )
30 * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
31 * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
32 * ..
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> DSYRFS improves the computed solution to a system of linear
41 *> equations when the coefficient matrix is symmetric indefinite, and
42 *> provides error bounds and backward error estimates for the solution.
43 *> \endverbatim
44 *
45 * Arguments:
46 * ==========
47 *
48 *> \param[in] UPLO
49 *> \verbatim
50 *> UPLO is CHARACTER*1
51 *> = 'U': Upper triangle of A is stored;
52 *> = 'L': Lower triangle of A is stored.
53 *> \endverbatim
54 *>
55 *> \param[in] N
56 *> \verbatim
57 *> N is INTEGER
58 *> The order of the matrix A. N >= 0.
59 *> \endverbatim
60 *>
61 *> \param[in] NRHS
62 *> \verbatim
63 *> NRHS is INTEGER
64 *> The number of right hand sides, i.e., the number of columns
65 *> of the matrices B and X. NRHS >= 0.
66 *> \endverbatim
67 *>
68 *> \param[in] A
69 *> \verbatim
70 *> A is DOUBLE PRECISION array, dimension (LDA,N)
71 *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
72 *> upper triangular part of A contains the upper triangular part
73 *> of the matrix A, and the strictly lower triangular part of A
74 *> is not referenced. If UPLO = 'L', the leading N-by-N lower
75 *> triangular part of A contains the lower triangular part of
76 *> the matrix A, and the strictly upper triangular part of A is
77 *> not referenced.
78 *> \endverbatim
79 *>
80 *> \param[in] LDA
81 *> \verbatim
82 *> LDA is INTEGER
83 *> The leading dimension of the array A. LDA >= max(1,N).
84 *> \endverbatim
85 *>
86 *> \param[in] AF
87 *> \verbatim
88 *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
89 *> The factored form of the matrix A. AF contains the block
90 *> diagonal matrix D and the multipliers used to obtain the
91 *> factor U or L from the factorization A = U*D*U**T or
92 *> A = L*D*L**T as computed by DSYTRF.
93 *> \endverbatim
94 *>
95 *> \param[in] LDAF
96 *> \verbatim
97 *> LDAF is INTEGER
98 *> The leading dimension of the array AF. LDAF >= max(1,N).
99 *> \endverbatim
100 *>
101 *> \param[in] IPIV
102 *> \verbatim
103 *> IPIV is INTEGER array, dimension (N)
104 *> Details of the interchanges and the block structure of D
105 *> as determined by DSYTRF.
106 *> \endverbatim
107 *>
108 *> \param[in] B
109 *> \verbatim
110 *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
111 *> The right hand side matrix B.
112 *> \endverbatim
113 *>
114 *> \param[in] LDB
115 *> \verbatim
116 *> LDB is INTEGER
117 *> The leading dimension of the array B. LDB >= max(1,N).
118 *> \endverbatim
119 *>
120 *> \param[in,out] X
121 *> \verbatim
122 *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
123 *> On entry, the solution matrix X, as computed by DSYTRS.
124 *> On exit, the improved solution matrix X.
125 *> \endverbatim
126 *>
127 *> \param[in] LDX
128 *> \verbatim
129 *> LDX is INTEGER
130 *> The leading dimension of the array X. LDX >= max(1,N).
131 *> \endverbatim
132 *>
133 *> \param[out] FERR
134 *> \verbatim
135 *> FERR is DOUBLE PRECISION array, dimension (NRHS)
136 *> The estimated forward error bound for each solution vector
137 *> X(j) (the j-th column of the solution matrix X).
138 *> If XTRUE is the true solution corresponding to X(j), FERR(j)
139 *> is an estimated upper bound for the magnitude of the largest
140 *> element in (X(j) - XTRUE) divided by the magnitude of the
141 *> largest element in X(j). The estimate is as reliable as
142 *> the estimate for RCOND, and is almost always a slight
143 *> overestimate of the true error.
144 *> \endverbatim
145 *>
146 *> \param[out] BERR
147 *> \verbatim
148 *> BERR is DOUBLE PRECISION array, dimension (NRHS)
149 *> The componentwise relative backward error of each solution
150 *> vector X(j) (i.e., the smallest relative change in
151 *> any element of A or B that makes X(j) an exact solution).
152 *> \endverbatim
153 *>
154 *> \param[out] WORK
155 *> \verbatim
156 *> WORK is DOUBLE PRECISION array, dimension (3*N)
157 *> \endverbatim
158 *>
159 *> \param[out] IWORK
160 *> \verbatim
161 *> IWORK is INTEGER array, dimension (N)
162 *> \endverbatim
163 *>
164 *> \param[out] INFO
165 *> \verbatim
166 *> INFO is INTEGER
167 *> = 0: successful exit
168 *> < 0: if INFO = -i, the i-th argument had an illegal value
169 *> \endverbatim
170 *
171 *> \par Internal Parameters:
172 * =========================
173 *>
174 *> \verbatim
175 *> ITMAX is the maximum number of steps of iterative refinement.
176 *> \endverbatim
177 *
178 * Authors:
179 * ========
180 *
181 *> \author Univ. of Tennessee
182 *> \author Univ. of California Berkeley
183 *> \author Univ. of Colorado Denver
184 *> \author NAG Ltd.
185 *
186 *> \date November 2011
187 *
188 *> \ingroup doubleSYcomputational
189 *
190 * =====================================================================
191  SUBROUTINE dsyrfs( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
192  $ x, ldx, ferr, berr, work, iwork, info )
193 *
194 * -- LAPACK computational routine (version 3.4.0) --
195 * -- LAPACK is a software package provided by Univ. of Tennessee, --
196 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
197 * November 2011
198 *
199 * .. Scalar Arguments ..
200  CHARACTER UPLO
201  INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
202 * ..
203 * .. Array Arguments ..
204  INTEGER IPIV( * ), IWORK( * )
205  DOUBLE PRECISION A( lda, * ), AF( ldaf, * ), B( ldb, * ),
206  $ berr( * ), ferr( * ), work( * ), x( ldx, * )
207 * ..
208 *
209 * =====================================================================
210 *
211 * .. Parameters ..
212  INTEGER ITMAX
213  parameter ( itmax = 5 )
214  DOUBLE PRECISION ZERO
215  parameter ( zero = 0.0d+0 )
216  DOUBLE PRECISION ONE
217  parameter ( one = 1.0d+0 )
218  DOUBLE PRECISION TWO
219  parameter ( two = 2.0d+0 )
220  DOUBLE PRECISION THREE
221  parameter ( three = 3.0d+0 )
222 * ..
223 * .. Local Scalars ..
224  LOGICAL UPPER
225  INTEGER COUNT, I, J, K, KASE, NZ
226  DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
227 * ..
228 * .. Local Arrays ..
229  INTEGER ISAVE( 3 )
230 * ..
231 * .. External Subroutines ..
232  EXTERNAL daxpy, dcopy, dlacn2, dsymv, dsytrs, xerbla
233 * ..
234 * .. Intrinsic Functions ..
235  INTRINSIC abs, max
236 * ..
237 * .. External Functions ..
238  LOGICAL LSAME
239  DOUBLE PRECISION DLAMCH
240  EXTERNAL lsame, dlamch
241 * ..
242 * .. Executable Statements ..
243 *
244 * Test the input parameters.
245 *
246  info = 0
247  upper = lsame( uplo, 'U' )
248  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
249  info = -1
250  ELSE IF( n.LT.0 ) THEN
251  info = -2
252  ELSE IF( nrhs.LT.0 ) THEN
253  info = -3
254  ELSE IF( lda.LT.max( 1, n ) ) THEN
255  info = -5
256  ELSE IF( ldaf.LT.max( 1, n ) ) THEN
257  info = -7
258  ELSE IF( ldb.LT.max( 1, n ) ) THEN
259  info = -10
260  ELSE IF( ldx.LT.max( 1, n ) ) THEN
261  info = -12
262  END IF
263  IF( info.NE.0 ) THEN
264  CALL xerbla( 'DSYRFS', -info )
265  RETURN
266  END IF
267 *
268 * Quick return if possible
269 *
270  IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
271  DO 10 j = 1, nrhs
272  ferr( j ) = zero
273  berr( j ) = zero
274  10 CONTINUE
275  RETURN
276  END IF
277 *
278 * NZ = maximum number of nonzero elements in each row of A, plus 1
279 *
280  nz = n + 1
281  eps = dlamch( 'Epsilon' )
282  safmin = dlamch( 'Safe minimum' )
283  safe1 = nz*safmin
284  safe2 = safe1 / eps
285 *
286 * Do for each right hand side
287 *
288  DO 140 j = 1, nrhs
289 *
290  count = 1
291  lstres = three
292  20 CONTINUE
293 *
294 * Loop until stopping criterion is satisfied.
295 *
296 * Compute residual R = B - A * X
297 *
298  CALL dcopy( n, b( 1, j ), 1, work( n+1 ), 1 )
299  CALL dsymv( uplo, n, -one, a, lda, x( 1, j ), 1, one,
300  $ work( n+1 ), 1 )
301 *
302 * Compute componentwise relative backward error from formula
303 *
304 * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
305 *
306 * where abs(Z) is the componentwise absolute value of the matrix
307 * or vector Z. If the i-th component of the denominator is less
308 * than SAFE2, then SAFE1 is added to the i-th components of the
309 * numerator and denominator before dividing.
310 *
311  DO 30 i = 1, n
312  work( i ) = abs( b( i, j ) )
313  30 CONTINUE
314 *
315 * Compute abs(A)*abs(X) + abs(B).
316 *
317  IF( upper ) THEN
318  DO 50 k = 1, n
319  s = zero
320  xk = abs( x( k, j ) )
321  DO 40 i = 1, k - 1
322  work( i ) = work( i ) + abs( a( i, k ) )*xk
323  s = s + abs( a( i, k ) )*abs( x( i, j ) )
324  40 CONTINUE
325  work( k ) = work( k ) + abs( a( k, k ) )*xk + s
326  50 CONTINUE
327  ELSE
328  DO 70 k = 1, n
329  s = zero
330  xk = abs( x( k, j ) )
331  work( k ) = work( k ) + abs( a( k, k ) )*xk
332  DO 60 i = k + 1, n
333  work( i ) = work( i ) + abs( a( i, k ) )*xk
334  s = s + abs( a( i, k ) )*abs( x( i, j ) )
335  60 CONTINUE
336  work( k ) = work( k ) + s
337  70 CONTINUE
338  END IF
339  s = zero
340  DO 80 i = 1, n
341  IF( work( i ).GT.safe2 ) THEN
342  s = max( s, abs( work( n+i ) ) / work( i ) )
343  ELSE
344  s = max( s, ( abs( work( n+i ) )+safe1 ) /
345  $ ( work( i )+safe1 ) )
346  END IF
347  80 CONTINUE
348  berr( j ) = s
349 *
350 * Test stopping criterion. Continue iterating if
351 * 1) The residual BERR(J) is larger than machine epsilon, and
352 * 2) BERR(J) decreased by at least a factor of 2 during the
353 * last iteration, and
354 * 3) At most ITMAX iterations tried.
355 *
356  IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
357  $ count.LE.itmax ) THEN
358 *
359 * Update solution and try again.
360 *
361  CALL dsytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ), n,
362  $ info )
363  CALL daxpy( n, one, work( n+1 ), 1, x( 1, j ), 1 )
364  lstres = berr( j )
365  count = count + 1
366  GO TO 20
367  END IF
368 *
369 * Bound error from formula
370 *
371 * norm(X - XTRUE) / norm(X) .le. FERR =
372 * norm( abs(inv(A))*
373 * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
374 *
375 * where
376 * norm(Z) is the magnitude of the largest component of Z
377 * inv(A) is the inverse of A
378 * abs(Z) is the componentwise absolute value of the matrix or
379 * vector Z
380 * NZ is the maximum number of nonzeros in any row of A, plus 1
381 * EPS is machine epsilon
382 *
383 * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
384 * is incremented by SAFE1 if the i-th component of
385 * abs(A)*abs(X) + abs(B) is less than SAFE2.
386 *
387 * Use DLACN2 to estimate the infinity-norm of the matrix
388 * inv(A) * diag(W),
389 * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
390 *
391  DO 90 i = 1, n
392  IF( work( i ).GT.safe2 ) THEN
393  work( i ) = abs( work( n+i ) ) + nz*eps*work( i )
394  ELSE
395  work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) + safe1
396  END IF
397  90 CONTINUE
398 *
399  kase = 0
400  100 CONTINUE
401  CALL dlacn2( n, work( 2*n+1 ), work( n+1 ), iwork, ferr( j ),
402  $ kase, isave )
403  IF( kase.NE.0 ) THEN
404  IF( kase.EQ.1 ) THEN
405 *
406 * Multiply by diag(W)*inv(A**T).
407 *
408  CALL dsytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ), n,
409  $ info )
410  DO 110 i = 1, n
411  work( n+i ) = work( i )*work( n+i )
412  110 CONTINUE
413  ELSE IF( kase.EQ.2 ) THEN
414 *
415 * Multiply by inv(A)*diag(W).
416 *
417  DO 120 i = 1, n
418  work( n+i ) = work( i )*work( n+i )
419  120 CONTINUE
420  CALL dsytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ), n,
421  $ info )
422  END IF
423  GO TO 100
424  END IF
425 *
426 * Normalize error.
427 *
428  lstres = zero
429  DO 130 i = 1, n
430  lstres = max( lstres, abs( x( i, j ) ) )
431  130 CONTINUE
432  IF( lstres.NE.zero )
433  $ ferr( j ) = ferr( j ) / lstres
434 *
435  140 CONTINUE
436 *
437  RETURN
438 *
439 * End of DSYRFS
440 *
441  END
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
subroutine dsyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DSYRFS
Definition: dsyrfs.f:193
subroutine daxpy(N, DA, DX, INCX, DY, INCY)
DAXPY
Definition: daxpy.f:54
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine dsytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DSYTRS
Definition: dsytrs.f:122
subroutine dlacn2(N, V, X, ISGN, EST, KASE, ISAVE)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition: dlacn2.f:138
subroutine dsymv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
DSYMV
Definition: dsymv.f:154