LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
sstevr.f
Go to the documentation of this file.
1 *> \brief <b> SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SSTEVR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevr.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
22 * M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
23 * LIWORK, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE
27 * INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
28 * REAL ABSTOL, VL, VU
29 * ..
30 * .. Array Arguments ..
31 * INTEGER ISUPPZ( * ), IWORK( * )
32 * REAL D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
33 * ..
34 *
35 *
36 *> \par Purpose:
37 * =============
38 *>
39 *> \verbatim
40 *>
41 *> SSTEVR computes selected eigenvalues and, optionally, eigenvectors
42 *> of a real symmetric tridiagonal matrix T. Eigenvalues and
43 *> eigenvectors can be selected by specifying either a range of values
44 *> or a range of indices for the desired eigenvalues.
45 *>
46 *> Whenever possible, SSTEVR calls SSTEMR to compute the
47 *> eigenspectrum using Relatively Robust Representations. SSTEMR
48 *> computes eigenvalues by the dqds algorithm, while orthogonal
49 *> eigenvectors are computed from various "good" L D L^T representations
50 *> (also known as Relatively Robust Representations). Gram-Schmidt
51 *> orthogonalization is avoided as far as possible. More specifically,
52 *> the various steps of the algorithm are as follows. For the i-th
53 *> unreduced block of T,
54 *> (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
55 *> is a relatively robust representation,
56 *> (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
57 *> relative accuracy by the dqds algorithm,
58 *> (c) If there is a cluster of close eigenvalues, "choose" sigma_i
59 *> close to the cluster, and go to step (a),
60 *> (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
61 *> compute the corresponding eigenvector by forming a
62 *> rank-revealing twisted factorization.
63 *> The desired accuracy of the output can be specified by the input
64 *> parameter ABSTOL.
65 *>
66 *> For more details, see "A new O(n^2) algorithm for the symmetric
67 *> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
68 *> Computer Science Division Technical Report No. UCB//CSD-97-971,
69 *> UC Berkeley, May 1997.
70 *>
71 *>
72 *> Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
73 *> on machines which conform to the ieee-754 floating point standard.
74 *> SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
75 *> when partial spectrum requests are made.
76 *>
77 *> Normal execution of SSTEMR may create NaNs and infinities and
78 *> hence may abort due to a floating point exception in environments
79 *> which do not handle NaNs and infinities in the ieee standard default
80 *> manner.
81 *> \endverbatim
82 *
83 * Arguments:
84 * ==========
85 *
86 *> \param[in] JOBZ
87 *> \verbatim
88 *> JOBZ is CHARACTER*1
89 *> = 'N': Compute eigenvalues only;
90 *> = 'V': Compute eigenvalues and eigenvectors.
91 *> \endverbatim
92 *>
93 *> \param[in] RANGE
94 *> \verbatim
95 *> RANGE is CHARACTER*1
96 *> = 'A': all eigenvalues will be found.
97 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
98 *> will be found.
99 *> = 'I': the IL-th through IU-th eigenvalues will be found.
100 *> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
101 *> SSTEIN are called
102 *> \endverbatim
103 *>
104 *> \param[in] N
105 *> \verbatim
106 *> N is INTEGER
107 *> The order of the matrix. N >= 0.
108 *> \endverbatim
109 *>
110 *> \param[in,out] D
111 *> \verbatim
112 *> D is REAL array, dimension (N)
113 *> On entry, the n diagonal elements of the tridiagonal matrix
114 *> A.
115 *> On exit, D may be multiplied by a constant factor chosen
116 *> to avoid over/underflow in computing the eigenvalues.
117 *> \endverbatim
118 *>
119 *> \param[in,out] E
120 *> \verbatim
121 *> E is REAL array, dimension (max(1,N-1))
122 *> On entry, the (n-1) subdiagonal elements of the tridiagonal
123 *> matrix A in elements 1 to N-1 of E.
124 *> On exit, E may be multiplied by a constant factor chosen
125 *> to avoid over/underflow in computing the eigenvalues.
126 *> \endverbatim
127 *>
128 *> \param[in] VL
129 *> \verbatim
130 *> VL is REAL
131 *> If RANGE='V', the lower bound of the interval to
132 *> be searched for eigenvalues. VL < VU.
133 *> Not referenced if RANGE = 'A' or 'I'.
134 *> \endverbatim
135 *>
136 *> \param[in] VU
137 *> \verbatim
138 *> VU is REAL
139 *> If RANGE='V', the upper bound of the interval to
140 *> be searched for eigenvalues. VL < VU.
141 *> Not referenced if RANGE = 'A' or 'I'.
142 *> \endverbatim
143 *>
144 *> \param[in] IL
145 *> \verbatim
146 *> IL is INTEGER
147 *> If RANGE='I', the index of the
148 *> smallest eigenvalue to be returned.
149 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
150 *> Not referenced if RANGE = 'A' or 'V'.
151 *> \endverbatim
152 *>
153 *> \param[in] IU
154 *> \verbatim
155 *> IU is INTEGER
156 *> If RANGE='I', the index of the
157 *> largest eigenvalue to be returned.
158 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
159 *> Not referenced if RANGE = 'A' or 'V'.
160 *> \endverbatim
161 *>
162 *> \param[in] ABSTOL
163 *> \verbatim
164 *> ABSTOL is REAL
165 *> The absolute error tolerance for the eigenvalues.
166 *> An approximate eigenvalue is accepted as converged
167 *> when it is determined to lie in an interval [a,b]
168 *> of width less than or equal to
169 *>
170 *> ABSTOL + EPS * max( |a|,|b| ) ,
171 *>
172 *> where EPS is the machine precision. If ABSTOL is less than
173 *> or equal to zero, then EPS*|T| will be used in its place,
174 *> where |T| is the 1-norm of the tridiagonal matrix obtained
175 *> by reducing A to tridiagonal form.
176 *>
177 *> See "Computing Small Singular Values of Bidiagonal Matrices
178 *> with Guaranteed High Relative Accuracy," by Demmel and
179 *> Kahan, LAPACK Working Note #3.
180 *>
181 *> If high relative accuracy is important, set ABSTOL to
182 *> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
183 *> eigenvalues are computed to high relative accuracy when
184 *> possible in future releases. The current code does not
185 *> make any guarantees about high relative accuracy, but
186 *> future releases will. See J. Barlow and J. Demmel,
187 *> "Computing Accurate Eigensystems of Scaled Diagonally
188 *> Dominant Matrices", LAPACK Working Note #7, for a discussion
189 *> of which matrices define their eigenvalues to high relative
190 *> accuracy.
191 *> \endverbatim
192 *>
193 *> \param[out] M
194 *> \verbatim
195 *> M is INTEGER
196 *> The total number of eigenvalues found. 0 <= M <= N.
197 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
198 *> \endverbatim
199 *>
200 *> \param[out] W
201 *> \verbatim
202 *> W is REAL array, dimension (N)
203 *> The first M elements contain the selected eigenvalues in
204 *> ascending order.
205 *> \endverbatim
206 *>
207 *> \param[out] Z
208 *> \verbatim
209 *> Z is REAL array, dimension (LDZ, max(1,M) )
210 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211 *> contain the orthonormal eigenvectors of the matrix A
212 *> corresponding to the selected eigenvalues, with the i-th
213 *> column of Z holding the eigenvector associated with W(i).
214 *> Note: the user must ensure that at least max(1,M) columns are
215 *> supplied in the array Z; if RANGE = 'V', the exact value of M
216 *> is not known in advance and an upper bound must be used.
217 *> \endverbatim
218 *>
219 *> \param[in] LDZ
220 *> \verbatim
221 *> LDZ is INTEGER
222 *> The leading dimension of the array Z. LDZ >= 1, and if
223 *> JOBZ = 'V', LDZ >= max(1,N).
224 *> \endverbatim
225 *>
226 *> \param[out] ISUPPZ
227 *> \verbatim
228 *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
229 *> The support of the eigenvectors in Z, i.e., the indices
230 *> indicating the nonzero elements in Z. The i-th eigenvector
231 *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
232 *> ISUPPZ( 2*i ).
233 *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
234 *> \endverbatim
235 *>
236 *> \param[out] WORK
237 *> \verbatim
238 *> WORK is REAL array, dimension (MAX(1,LWORK))
239 *> On exit, if INFO = 0, WORK(1) returns the optimal (and
240 *> minimal) LWORK.
241 *> \endverbatim
242 *>
243 *> \param[in] LWORK
244 *> \verbatim
245 *> LWORK is INTEGER
246 *> The dimension of the array WORK. LWORK >= 20*N.
247 *>
248 *> If LWORK = -1, then a workspace query is assumed; the routine
249 *> only calculates the optimal sizes of the WORK and IWORK
250 *> arrays, returns these values as the first entries of the WORK
251 *> and IWORK arrays, and no error message related to LWORK or
252 *> LIWORK is issued by XERBLA.
253 *> \endverbatim
254 *>
255 *> \param[out] IWORK
256 *> \verbatim
257 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
258 *> On exit, if INFO = 0, IWORK(1) returns the optimal (and
259 *> minimal) LIWORK.
260 *> \endverbatim
261 *>
262 *> \param[in] LIWORK
263 *> \verbatim
264 *> LIWORK is INTEGER
265 *> The dimension of the array IWORK. LIWORK >= 10*N.
266 *>
267 *> If LIWORK = -1, then a workspace query is assumed; the
268 *> routine only calculates the optimal sizes of the WORK and
269 *> IWORK arrays, returns these values as the first entries of
270 *> the WORK and IWORK arrays, and no error message related to
271 *> LWORK or LIWORK is issued by XERBLA.
272 *> \endverbatim
273 *>
274 *> \param[out] INFO
275 *> \verbatim
276 *> INFO is INTEGER
277 *> = 0: successful exit
278 *> < 0: if INFO = -i, the i-th argument had an illegal value
279 *> > 0: Internal error
280 *> \endverbatim
281 *
282 * Authors:
283 * ========
284 *
285 *> \author Univ. of Tennessee
286 *> \author Univ. of California Berkeley
287 *> \author Univ. of Colorado Denver
288 *> \author NAG Ltd.
289 *
290 *> \date June 2016
291 *
292 *> \ingroup realOTHEReigen
293 *
294 *> \par Contributors:
295 * ==================
296 *>
297 *> Inderjit Dhillon, IBM Almaden, USA \n
298 *> Osni Marques, LBNL/NERSC, USA \n
299 *> Ken Stanley, Computer Science Division, University of
300 *> California at Berkeley, USA \n
301 *> Jason Riedy, Computer Science Division, University of
302 *> California at Berkeley, USA \n
303 *>
304 * =====================================================================
305  SUBROUTINE sstevr( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
306  $ m, w, z, ldz, isuppz, work, lwork, iwork,
307  $ liwork, info )
308 *
309 * -- LAPACK driver routine (version 3.6.1) --
310 * -- LAPACK is a software package provided by Univ. of Tennessee, --
311 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
312 * June 2016
313 *
314 * .. Scalar Arguments ..
315  CHARACTER JOBZ, RANGE
316  INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
317  REAL ABSTOL, VL, VU
318 * ..
319 * .. Array Arguments ..
320  INTEGER ISUPPZ( * ), IWORK( * )
321  REAL D( * ), E( * ), W( * ), WORK( * ), Z( ldz, * )
322 * ..
323 *
324 * =====================================================================
325 *
326 * .. Parameters ..
327  REAL ZERO, ONE, TWO
328  parameter ( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
329 * ..
330 * .. Local Scalars ..
331  LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
332  $ tryrac
333  CHARACTER ORDER
334  INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
335  $ indiwo, iscale, j, jj, liwmin, lwmin, nsplit
336  REAL BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
337  $ tmp1, tnrm, vll, vuu
338 * ..
339 * .. External Functions ..
340  LOGICAL LSAME
341  INTEGER ILAENV
342  REAL SLAMCH, SLANST
343  EXTERNAL lsame, ilaenv, slamch, slanst
344 * ..
345 * .. External Subroutines ..
346  EXTERNAL scopy, sscal, sstebz, sstemr, sstein, ssterf,
347  $ sswap, xerbla
348 * ..
349 * .. Intrinsic Functions ..
350  INTRINSIC max, min, sqrt
351 * ..
352 * .. Executable Statements ..
353 *
354 *
355 * Test the input parameters.
356 *
357  ieeeok = ilaenv( 10, 'SSTEVR', 'N', 1, 2, 3, 4 )
358 *
359  wantz = lsame( jobz, 'V' )
360  alleig = lsame( range, 'A' )
361  valeig = lsame( range, 'V' )
362  indeig = lsame( range, 'I' )
363 *
364  lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
365  lwmin = max( 1, 20*n )
366  liwmin = max(1, 10*n )
367 *
368 *
369  info = 0
370  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
371  info = -1
372  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
373  info = -2
374  ELSE IF( n.LT.0 ) THEN
375  info = -3
376  ELSE
377  IF( valeig ) THEN
378  IF( n.GT.0 .AND. vu.LE.vl )
379  $ info = -7
380  ELSE IF( indeig ) THEN
381  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
382  info = -8
383  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
384  info = -9
385  END IF
386  END IF
387  END IF
388  IF( info.EQ.0 ) THEN
389  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
390  info = -14
391  END IF
392  END IF
393 *
394  IF( info.EQ.0 ) THEN
395  work( 1 ) = lwmin
396  iwork( 1 ) = liwmin
397 *
398  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
399  info = -17
400  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
401  info = -19
402  END IF
403  END IF
404 *
405  IF( info.NE.0 ) THEN
406  CALL xerbla( 'SSTEVR', -info )
407  RETURN
408  ELSE IF( lquery ) THEN
409  RETURN
410  END IF
411 *
412 * Quick return if possible
413 *
414  m = 0
415  IF( n.EQ.0 )
416  $ RETURN
417 *
418  IF( n.EQ.1 ) THEN
419  IF( alleig .OR. indeig ) THEN
420  m = 1
421  w( 1 ) = d( 1 )
422  ELSE
423  IF( vl.LT.d( 1 ) .AND. vu.GE.d( 1 ) ) THEN
424  m = 1
425  w( 1 ) = d( 1 )
426  END IF
427  END IF
428  IF( wantz )
429  $ z( 1, 1 ) = one
430  RETURN
431  END IF
432 *
433 * Get machine constants.
434 *
435  safmin = slamch( 'Safe minimum' )
436  eps = slamch( 'Precision' )
437  smlnum = safmin / eps
438  bignum = one / smlnum
439  rmin = sqrt( smlnum )
440  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
441 *
442 *
443 * Scale matrix to allowable range, if necessary.
444 *
445  iscale = 0
446  IF( valeig ) THEN
447  vll = vl
448  vuu = vu
449  END IF
450 *
451  tnrm = slanst( 'M', n, d, e )
452  IF( tnrm.GT.zero .AND. tnrm.LT.rmin ) THEN
453  iscale = 1
454  sigma = rmin / tnrm
455  ELSE IF( tnrm.GT.rmax ) THEN
456  iscale = 1
457  sigma = rmax / tnrm
458  END IF
459  IF( iscale.EQ.1 ) THEN
460  CALL sscal( n, sigma, d, 1 )
461  CALL sscal( n-1, sigma, e( 1 ), 1 )
462  IF( valeig ) THEN
463  vll = vl*sigma
464  vuu = vu*sigma
465  END IF
466  END IF
467 
468 * Initialize indices into workspaces. Note: These indices are used only
469 * if SSTERF or SSTEMR fail.
470 
471 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
472 * stores the block indices of each of the M<=N eigenvalues.
473  indibl = 1
474 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
475 * stores the starting and finishing indices of each block.
476  indisp = indibl + n
477 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
478 * that corresponding to eigenvectors that fail to converge in
479 * SSTEIN. This information is discarded; if any fail, the driver
480 * returns INFO > 0.
481  indifl = indisp + n
482 * INDIWO is the offset of the remaining integer workspace.
483  indiwo = indisp + n
484 *
485 * If all eigenvalues are desired, then
486 * call SSTERF or SSTEMR. If this fails for some eigenvalue, then
487 * try SSTEBZ.
488 *
489 *
490  test = .false.
491  IF( indeig ) THEN
492  IF( il.EQ.1 .AND. iu.EQ.n ) THEN
493  test = .true.
494  END IF
495  END IF
496  IF( ( alleig .OR. test ) .AND. ieeeok.EQ.1 ) THEN
497  CALL scopy( n-1, e( 1 ), 1, work( 1 ), 1 )
498  IF( .NOT.wantz ) THEN
499  CALL scopy( n, d, 1, w, 1 )
500  CALL ssterf( n, w, work, info )
501  ELSE
502  CALL scopy( n, d, 1, work( n+1 ), 1 )
503  IF (abstol .LE. two*n*eps) THEN
504  tryrac = .true.
505  ELSE
506  tryrac = .false.
507  END IF
508  CALL sstemr( jobz, 'A', n, work( n+1 ), work, vl, vu, il,
509  $ iu, m, w, z, ldz, n, isuppz, tryrac,
510  $ work( 2*n+1 ), lwork-2*n, iwork, liwork, info )
511 *
512  END IF
513  IF( info.EQ.0 ) THEN
514  m = n
515  GO TO 10
516  END IF
517  info = 0
518  END IF
519 *
520 * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
521 *
522  IF( wantz ) THEN
523  order = 'B'
524  ELSE
525  order = 'E'
526  END IF
527 
528  CALL sstebz( range, order, n, vll, vuu, il, iu, abstol, d, e, m,
529  $ nsplit, w, iwork( indibl ), iwork( indisp ), work,
530  $ iwork( indiwo ), info )
531 *
532  IF( wantz ) THEN
533  CALL sstein( n, d, e, m, w, iwork( indibl ), iwork( indisp ),
534  $ z, ldz, work, iwork( indiwo ), iwork( indifl ),
535  $ info )
536  END IF
537 *
538 * If matrix was scaled, then rescale eigenvalues appropriately.
539 *
540  10 CONTINUE
541  IF( iscale.EQ.1 ) THEN
542  IF( info.EQ.0 ) THEN
543  imax = m
544  ELSE
545  imax = info - 1
546  END IF
547  CALL sscal( imax, one / sigma, w, 1 )
548  END IF
549 *
550 * If eigenvalues are not in order, then sort them, along with
551 * eigenvectors.
552 *
553  IF( wantz ) THEN
554  DO 30 j = 1, m - 1
555  i = 0
556  tmp1 = w( j )
557  DO 20 jj = j + 1, m
558  IF( w( jj ).LT.tmp1 ) THEN
559  i = jj
560  tmp1 = w( jj )
561  END IF
562  20 CONTINUE
563 *
564  IF( i.NE.0 ) THEN
565  w( i ) = w( j )
566  w( j ) = tmp1
567  CALL sswap( n, z( 1, i ), 1, z( 1, j ), 1 )
568  END IF
569  30 CONTINUE
570  END IF
571 *
572 * Causes problems with tests 19 & 20:
573 * IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
574 *
575 *
576  work( 1 ) = lwmin
577  iwork( 1 ) = liwmin
578  RETURN
579 *
580 * End of SSTEVR
581 *
582  END
subroutine sstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
SSTEBZ
Definition: sstebz.f:275
subroutine sstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSTEIN
Definition: sstein.f:176
subroutine sstevr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matric...
Definition: sstevr.f:308
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55
subroutine sswap(N, SX, INCX, SY, INCY)
SSWAP
Definition: sswap.f:53
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:88
subroutine sstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEMR
Definition: sstemr.f:323
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53