LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
claev2.f
Go to the documentation of this file.
1 *> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CLAEV2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claev2.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claev2.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claev2.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
22 *
23 * .. Scalar Arguments ..
24 * REAL CS1, RT1, RT2
25 * COMPLEX A, B, C, SN1
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
35 *> [ A B ]
36 *> [ CONJG(B) C ].
37 *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
38 *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
39 *> eigenvector for RT1, giving the decomposition
40 *>
41 *> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
42 *> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
43 *> \endverbatim
44 *
45 * Arguments:
46 * ==========
47 *
48 *> \param[in] A
49 *> \verbatim
50 *> A is COMPLEX
51 *> The (1,1) element of the 2-by-2 matrix.
52 *> \endverbatim
53 *>
54 *> \param[in] B
55 *> \verbatim
56 *> B is COMPLEX
57 *> The (1,2) element and the conjugate of the (2,1) element of
58 *> the 2-by-2 matrix.
59 *> \endverbatim
60 *>
61 *> \param[in] C
62 *> \verbatim
63 *> C is COMPLEX
64 *> The (2,2) element of the 2-by-2 matrix.
65 *> \endverbatim
66 *>
67 *> \param[out] RT1
68 *> \verbatim
69 *> RT1 is REAL
70 *> The eigenvalue of larger absolute value.
71 *> \endverbatim
72 *>
73 *> \param[out] RT2
74 *> \verbatim
75 *> RT2 is REAL
76 *> The eigenvalue of smaller absolute value.
77 *> \endverbatim
78 *>
79 *> \param[out] CS1
80 *> \verbatim
81 *> CS1 is REAL
82 *> \endverbatim
83 *>
84 *> \param[out] SN1
85 *> \verbatim
86 *> SN1 is COMPLEX
87 *> The vector (CS1, SN1) is a unit right eigenvector for RT1.
88 *> \endverbatim
89 *
90 * Authors:
91 * ========
92 *
93 *> \author Univ. of Tennessee
94 *> \author Univ. of California Berkeley
95 *> \author Univ. of Colorado Denver
96 *> \author NAG Ltd.
97 *
98 *> \date September 2012
99 *
100 *> \ingroup complexOTHERauxiliary
101 *
102 *> \par Further Details:
103 * =====================
104 *>
105 *> \verbatim
106 *>
107 *> RT1 is accurate to a few ulps barring over/underflow.
108 *>
109 *> RT2 may be inaccurate if there is massive cancellation in the
110 *> determinant A*C-B*B; higher precision or correctly rounded or
111 *> correctly truncated arithmetic would be needed to compute RT2
112 *> accurately in all cases.
113 *>
114 *> CS1 and SN1 are accurate to a few ulps barring over/underflow.
115 *>
116 *> Overflow is possible only if RT1 is within a factor of 5 of overflow.
117 *> Underflow is harmless if the input data is 0 or exceeds
118 *> underflow_threshold / macheps.
119 *> \endverbatim
120 *>
121 * =====================================================================
122  SUBROUTINE claev2( A, B, C, RT1, RT2, CS1, SN1 )
123 *
124 * -- LAPACK auxiliary routine (version 3.4.2) --
125 * -- LAPACK is a software package provided by Univ. of Tennessee, --
126 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127 * September 2012
128 *
129 * .. Scalar Arguments ..
130  REAL CS1, RT1, RT2
131  COMPLEX A, B, C, SN1
132 * ..
133 *
134 * =====================================================================
135 *
136 * .. Parameters ..
137  REAL ZERO
138  parameter ( zero = 0.0e0 )
139  REAL ONE
140  parameter ( one = 1.0e0 )
141 * ..
142 * .. Local Scalars ..
143  REAL T
144  COMPLEX W
145 * ..
146 * .. External Subroutines ..
147  EXTERNAL slaev2
148 * ..
149 * .. Intrinsic Functions ..
150  INTRINSIC abs, conjg, real
151 * ..
152 * .. Executable Statements ..
153 *
154  IF( abs( b ).EQ.zero ) THEN
155  w = one
156  ELSE
157  w = conjg( b ) / abs( b )
158  END IF
159  CALL slaev2( REAL( A ), ABS( b ), REAL( C ), RT1, RT2, CS1, T )
160  sn1 = w*t
161  RETURN
162 *
163 * End of CLAEV2
164 *
165  END
subroutine claev2(A, B, C, RT1, RT2, CS1, SN1)
CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition: claev2.f:123
subroutine slaev2(A, B, C, RT1, RT2, CS1, SN1)
SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition: slaev2.f:122