LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cppsvx.f
Go to the documentation of this file.
1 *> \brief <b> CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CPPSVX + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cppsvx.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cppsvx.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cppsvx.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
22 * X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER EQUED, FACT, UPLO
26 * INTEGER INFO, LDB, LDX, N, NRHS
27 * REAL RCOND
28 * ..
29 * .. Array Arguments ..
30 * REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
31 * COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
32 * $ X( LDX, * )
33 * ..
34 *
35 *
36 *> \par Purpose:
37 * =============
38 *>
39 *> \verbatim
40 *>
41 *> CPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
42 *> compute the solution to a complex system of linear equations
43 *> A * X = B,
44 *> where A is an N-by-N Hermitian positive definite matrix stored in
45 *> packed format and X and B are N-by-NRHS matrices.
46 *>
47 *> Error bounds on the solution and a condition estimate are also
48 *> provided.
49 *> \endverbatim
50 *
51 *> \par Description:
52 * =================
53 *>
54 *> \verbatim
55 *>
56 *> The following steps are performed:
57 *>
58 *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
59 *> the system:
60 *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
61 *> Whether or not the system will be equilibrated depends on the
62 *> scaling of the matrix A, but if equilibration is used, A is
63 *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
64 *>
65 *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
66 *> factor the matrix A (after equilibration if FACT = 'E') as
67 *> A = U**H * U , if UPLO = 'U', or
68 *> A = L * L**H, if UPLO = 'L',
69 *> where U is an upper triangular matrix, L is a lower triangular
70 *> matrix, and **H indicates conjugate transpose.
71 *>
72 *> 3. If the leading i-by-i principal minor is not positive definite,
73 *> then the routine returns with INFO = i. Otherwise, the factored
74 *> form of A is used to estimate the condition number of the matrix
75 *> A. If the reciprocal of the condition number is less than machine
76 *> precision, INFO = N+1 is returned as a warning, but the routine
77 *> still goes on to solve for X and compute error bounds as
78 *> described below.
79 *>
80 *> 4. The system of equations is solved for X using the factored form
81 *> of A.
82 *>
83 *> 5. Iterative refinement is applied to improve the computed solution
84 *> matrix and calculate error bounds and backward error estimates
85 *> for it.
86 *>
87 *> 6. If equilibration was used, the matrix X is premultiplied by
88 *> diag(S) so that it solves the original system before
89 *> equilibration.
90 *> \endverbatim
91 *
92 * Arguments:
93 * ==========
94 *
95 *> \param[in] FACT
96 *> \verbatim
97 *> FACT is CHARACTER*1
98 *> Specifies whether or not the factored form of the matrix A is
99 *> supplied on entry, and if not, whether the matrix A should be
100 *> equilibrated before it is factored.
101 *> = 'F': On entry, AFP contains the factored form of A.
102 *> If EQUED = 'Y', the matrix A has been equilibrated
103 *> with scaling factors given by S. AP and AFP will not
104 *> be modified.
105 *> = 'N': The matrix A will be copied to AFP and factored.
106 *> = 'E': The matrix A will be equilibrated if necessary, then
107 *> copied to AFP and factored.
108 *> \endverbatim
109 *>
110 *> \param[in] UPLO
111 *> \verbatim
112 *> UPLO is CHARACTER*1
113 *> = 'U': Upper triangle of A is stored;
114 *> = 'L': Lower triangle of A is stored.
115 *> \endverbatim
116 *>
117 *> \param[in] N
118 *> \verbatim
119 *> N is INTEGER
120 *> The number of linear equations, i.e., the order of the
121 *> matrix A. N >= 0.
122 *> \endverbatim
123 *>
124 *> \param[in] NRHS
125 *> \verbatim
126 *> NRHS is INTEGER
127 *> The number of right hand sides, i.e., the number of columns
128 *> of the matrices B and X. NRHS >= 0.
129 *> \endverbatim
130 *>
131 *> \param[in,out] AP
132 *> \verbatim
133 *> AP is COMPLEX array, dimension (N*(N+1)/2)
134 *> On entry, the upper or lower triangle of the Hermitian matrix
135 *> A, packed columnwise in a linear array, except if FACT = 'F'
136 *> and EQUED = 'Y', then A must contain the equilibrated matrix
137 *> diag(S)*A*diag(S). The j-th column of A is stored in the
138 *> array AP as follows:
139 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
140 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
141 *> See below for further details. A is not modified if
142 *> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
143 *>
144 *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
145 *> diag(S)*A*diag(S).
146 *> \endverbatim
147 *>
148 *> \param[in,out] AFP
149 *> \verbatim
150 *> AFP is COMPLEX array, dimension (N*(N+1)/2)
151 *> If FACT = 'F', then AFP is an input argument and on entry
152 *> contains the triangular factor U or L from the Cholesky
153 *> factorization A = U**H*U or A = L*L**H, in the same storage
154 *> format as A. If EQUED .ne. 'N', then AFP is the factored
155 *> form of the equilibrated matrix A.
156 *>
157 *> If FACT = 'N', then AFP is an output argument and on exit
158 *> returns the triangular factor U or L from the Cholesky
159 *> factorization A = U**H * U or A = L * L**H of the original
160 *> matrix A.
161 *>
162 *> If FACT = 'E', then AFP is an output argument and on exit
163 *> returns the triangular factor U or L from the Cholesky
164 *> factorization A = U**H*U or A = L*L**H of the equilibrated
165 *> matrix A (see the description of AP for the form of the
166 *> equilibrated matrix).
167 *> \endverbatim
168 *>
169 *> \param[in,out] EQUED
170 *> \verbatim
171 *> EQUED is CHARACTER*1
172 *> Specifies the form of equilibration that was done.
173 *> = 'N': No equilibration (always true if FACT = 'N').
174 *> = 'Y': Equilibration was done, i.e., A has been replaced by
175 *> diag(S) * A * diag(S).
176 *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
177 *> output argument.
178 *> \endverbatim
179 *>
180 *> \param[in,out] S
181 *> \verbatim
182 *> S is REAL array, dimension (N)
183 *> The scale factors for A; not accessed if EQUED = 'N'. S is
184 *> an input argument if FACT = 'F'; otherwise, S is an output
185 *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
186 *> must be positive.
187 *> \endverbatim
188 *>
189 *> \param[in,out] B
190 *> \verbatim
191 *> B is COMPLEX array, dimension (LDB,NRHS)
192 *> On entry, the N-by-NRHS right hand side matrix B.
193 *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
194 *> B is overwritten by diag(S) * B.
195 *> \endverbatim
196 *>
197 *> \param[in] LDB
198 *> \verbatim
199 *> LDB is INTEGER
200 *> The leading dimension of the array B. LDB >= max(1,N).
201 *> \endverbatim
202 *>
203 *> \param[out] X
204 *> \verbatim
205 *> X is COMPLEX array, dimension (LDX,NRHS)
206 *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
207 *> the original system of equations. Note that if EQUED = 'Y',
208 *> A and B are modified on exit, and the solution to the
209 *> equilibrated system is inv(diag(S))*X.
210 *> \endverbatim
211 *>
212 *> \param[in] LDX
213 *> \verbatim
214 *> LDX is INTEGER
215 *> The leading dimension of the array X. LDX >= max(1,N).
216 *> \endverbatim
217 *>
218 *> \param[out] RCOND
219 *> \verbatim
220 *> RCOND is REAL
221 *> The estimate of the reciprocal condition number of the matrix
222 *> A after equilibration (if done). If RCOND is less than the
223 *> machine precision (in particular, if RCOND = 0), the matrix
224 *> is singular to working precision. This condition is
225 *> indicated by a return code of INFO > 0.
226 *> \endverbatim
227 *>
228 *> \param[out] FERR
229 *> \verbatim
230 *> FERR is REAL array, dimension (NRHS)
231 *> The estimated forward error bound for each solution vector
232 *> X(j) (the j-th column of the solution matrix X).
233 *> If XTRUE is the true solution corresponding to X(j), FERR(j)
234 *> is an estimated upper bound for the magnitude of the largest
235 *> element in (X(j) - XTRUE) divided by the magnitude of the
236 *> largest element in X(j). The estimate is as reliable as
237 *> the estimate for RCOND, and is almost always a slight
238 *> overestimate of the true error.
239 *> \endverbatim
240 *>
241 *> \param[out] BERR
242 *> \verbatim
243 *> BERR is REAL array, dimension (NRHS)
244 *> The componentwise relative backward error of each solution
245 *> vector X(j) (i.e., the smallest relative change in
246 *> any element of A or B that makes X(j) an exact solution).
247 *> \endverbatim
248 *>
249 *> \param[out] WORK
250 *> \verbatim
251 *> WORK is COMPLEX array, dimension (2*N)
252 *> \endverbatim
253 *>
254 *> \param[out] RWORK
255 *> \verbatim
256 *> RWORK is REAL array, dimension (N)
257 *> \endverbatim
258 *>
259 *> \param[out] INFO
260 *> \verbatim
261 *> INFO is INTEGER
262 *> = 0: successful exit
263 *> < 0: if INFO = -i, the i-th argument had an illegal value
264 *> > 0: if INFO = i, and i is
265 *> <= N: the leading minor of order i of A is
266 *> not positive definite, so the factorization
267 *> could not be completed, and the solution has not
268 *> been computed. RCOND = 0 is returned.
269 *> = N+1: U is nonsingular, but RCOND is less than machine
270 *> precision, meaning that the matrix is singular
271 *> to working precision. Nevertheless, the
272 *> solution and error bounds are computed because
273 *> there are a number of situations where the
274 *> computed solution can be more accurate than the
275 *> value of RCOND would suggest.
276 *> \endverbatim
277 *
278 * Authors:
279 * ========
280 *
281 *> \author Univ. of Tennessee
282 *> \author Univ. of California Berkeley
283 *> \author Univ. of Colorado Denver
284 *> \author NAG Ltd.
285 *
286 *> \date April 2012
287 *
288 *> \ingroup complexOTHERsolve
289 *
290 *> \par Further Details:
291 * =====================
292 *>
293 *> \verbatim
294 *>
295 *> The packed storage scheme is illustrated by the following example
296 *> when N = 4, UPLO = 'U':
297 *>
298 *> Two-dimensional storage of the Hermitian matrix A:
299 *>
300 *> a11 a12 a13 a14
301 *> a22 a23 a24
302 *> a33 a34 (aij = conjg(aji))
303 *> a44
304 *>
305 *> Packed storage of the upper triangle of A:
306 *>
307 *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
308 *> \endverbatim
309 *>
310 * =====================================================================
311  SUBROUTINE cppsvx( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB,
312  $ x, ldx, rcond, ferr, berr, work, rwork, info )
313 *
314 * -- LAPACK driver routine (version 3.4.1) --
315 * -- LAPACK is a software package provided by Univ. of Tennessee, --
316 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
317 * April 2012
318 *
319 * .. Scalar Arguments ..
320  CHARACTER EQUED, FACT, UPLO
321  INTEGER INFO, LDB, LDX, N, NRHS
322  REAL RCOND
323 * ..
324 * .. Array Arguments ..
325  REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
326  COMPLEX AFP( * ), AP( * ), B( ldb, * ), WORK( * ),
327  $ x( ldx, * )
328 * ..
329 *
330 * =====================================================================
331 *
332 * .. Parameters ..
333  REAL ZERO, ONE
334  parameter ( zero = 0.0e+0, one = 1.0e+0 )
335 * ..
336 * .. Local Scalars ..
337  LOGICAL EQUIL, NOFACT, RCEQU
338  INTEGER I, INFEQU, J
339  REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
340 * ..
341 * .. External Functions ..
342  LOGICAL LSAME
343  REAL CLANHP, SLAMCH
344  EXTERNAL lsame, clanhp, slamch
345 * ..
346 * .. External Subroutines ..
347  EXTERNAL ccopy, clacpy, claqhp, cppcon, cppequ, cpprfs,
348  $ cpptrf, cpptrs, xerbla
349 * ..
350 * .. Intrinsic Functions ..
351  INTRINSIC max, min
352 * ..
353 * .. Executable Statements ..
354 *
355  info = 0
356  nofact = lsame( fact, 'N' )
357  equil = lsame( fact, 'E' )
358  IF( nofact .OR. equil ) THEN
359  equed = 'N'
360  rcequ = .false.
361  ELSE
362  rcequ = lsame( equed, 'Y' )
363  smlnum = slamch( 'Safe minimum' )
364  bignum = one / smlnum
365  END IF
366 *
367 * Test the input parameters.
368 *
369  IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
370  $ THEN
371  info = -1
372  ELSE IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) )
373  $ THEN
374  info = -2
375  ELSE IF( n.LT.0 ) THEN
376  info = -3
377  ELSE IF( nrhs.LT.0 ) THEN
378  info = -4
379  ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
380  $ ( rcequ .OR. lsame( equed, 'N' ) ) ) THEN
381  info = -7
382  ELSE
383  IF( rcequ ) THEN
384  smin = bignum
385  smax = zero
386  DO 10 j = 1, n
387  smin = min( smin, s( j ) )
388  smax = max( smax, s( j ) )
389  10 CONTINUE
390  IF( smin.LE.zero ) THEN
391  info = -8
392  ELSE IF( n.GT.0 ) THEN
393  scond = max( smin, smlnum ) / min( smax, bignum )
394  ELSE
395  scond = one
396  END IF
397  END IF
398  IF( info.EQ.0 ) THEN
399  IF( ldb.LT.max( 1, n ) ) THEN
400  info = -10
401  ELSE IF( ldx.LT.max( 1, n ) ) THEN
402  info = -12
403  END IF
404  END IF
405  END IF
406 *
407  IF( info.NE.0 ) THEN
408  CALL xerbla( 'CPPSVX', -info )
409  RETURN
410  END IF
411 *
412  IF( equil ) THEN
413 *
414 * Compute row and column scalings to equilibrate the matrix A.
415 *
416  CALL cppequ( uplo, n, ap, s, scond, amax, infequ )
417  IF( infequ.EQ.0 ) THEN
418 *
419 * Equilibrate the matrix.
420 *
421  CALL claqhp( uplo, n, ap, s, scond, amax, equed )
422  rcequ = lsame( equed, 'Y' )
423  END IF
424  END IF
425 *
426 * Scale the right-hand side.
427 *
428  IF( rcequ ) THEN
429  DO 30 j = 1, nrhs
430  DO 20 i = 1, n
431  b( i, j ) = s( i )*b( i, j )
432  20 CONTINUE
433  30 CONTINUE
434  END IF
435 *
436  IF( nofact .OR. equil ) THEN
437 *
438 * Compute the Cholesky factorization A = U**H * U or A = L * L**H.
439 *
440  CALL ccopy( n*( n+1 ) / 2, ap, 1, afp, 1 )
441  CALL cpptrf( uplo, n, afp, info )
442 *
443 * Return if INFO is non-zero.
444 *
445  IF( info.GT.0 )THEN
446  rcond = zero
447  RETURN
448  END IF
449  END IF
450 *
451 * Compute the norm of the matrix A.
452 *
453  anorm = clanhp( 'I', uplo, n, ap, rwork )
454 *
455 * Compute the reciprocal of the condition number of A.
456 *
457  CALL cppcon( uplo, n, afp, anorm, rcond, work, rwork, info )
458 *
459 * Compute the solution matrix X.
460 *
461  CALL clacpy( 'Full', n, nrhs, b, ldb, x, ldx )
462  CALL cpptrs( uplo, n, nrhs, afp, x, ldx, info )
463 *
464 * Use iterative refinement to improve the computed solution and
465 * compute error bounds and backward error estimates for it.
466 *
467  CALL cpprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr,
468  $ work, rwork, info )
469 *
470 * Transform the solution matrix X to a solution of the original
471 * system.
472 *
473  IF( rcequ ) THEN
474  DO 50 j = 1, nrhs
475  DO 40 i = 1, n
476  x( i, j ) = s( i )*x( i, j )
477  40 CONTINUE
478  50 CONTINUE
479  DO 60 j = 1, nrhs
480  ferr( j ) = ferr( j ) / scond
481  60 CONTINUE
482  END IF
483 *
484 * Set INFO = N+1 if the matrix is singular to working precision.
485 *
486  IF( rcond.LT.slamch( 'Epsilon' ) )
487  $ info = n + 1
488 *
489  RETURN
490 *
491 * End of CPPSVX
492 *
493  END
subroutine cpptrs(UPLO, N, NRHS, AP, B, LDB, INFO)
CPPTRS
Definition: cpptrs.f:110
subroutine claqhp(UPLO, N, AP, S, SCOND, AMAX, EQUED)
CLAQHP scales a Hermitian matrix stored in packed form.
Definition: claqhp.f:128
subroutine cpptrf(UPLO, N, AP, INFO)
CPPTRF
Definition: cpptrf.f:121
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cppcon(UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO)
CPPCON
Definition: cppcon.f:120
subroutine cppsvx(FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices ...
Definition: cppsvx.f:313
subroutine cpprfs(UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CPPRFS
Definition: cpprfs.f:173
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:52
subroutine cppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
CPPEQU
Definition: cppequ.f:119