153 REAL FUNCTION cla_gbrcond_x( TRANS, N, KL, KU, AB, LDAB, AFB,
154 $ ldafb, ipiv, x, info, work, rwork )
163 INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO
167 COMPLEX AB( ldab, * ), AFB( ldafb, * ), WORK( * ),
177 REAL AINVNM, ANORM, TMP
197 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( AIMAG( zdum ) )
204 notrans = lsame( trans,
'N' )
205 IF ( .NOT. notrans .AND. .NOT. lsame(trans,
'T') .AND. .NOT.
206 $ lsame( trans,
'C' ) )
THEN
208 ELSE IF( n.LT.0 )
THEN
210 ELSE IF( kl.LT.0 .OR. kl.GT.n-1 )
THEN
212 ELSE IF( ku.LT.0 .OR. ku.GT.n-1 )
THEN
214 ELSE IF( ldab.LT.kl+ku+1 )
THEN
216 ELSE IF( ldafb.LT.2*kl+ku+1 )
THEN
220 CALL xerbla(
'CLA_GBRCOND_X', -info )
232 DO j = max( i-kl, 1 ), min( i+ku, n )
233 tmp = tmp + cabs1( ab( kd+i-j, j) * x( j ) )
236 anorm = max( anorm, tmp )
241 DO j = max( i-kl, 1 ), min( i+ku, n )
242 tmp = tmp + cabs1( ab( ke-i+j, i ) * x( j ) )
245 anorm = max( anorm, tmp )
254 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
264 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
271 work( i ) = work( i ) * rwork( i )
275 CALL cgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
276 $ ipiv, work, n, info )
278 CALL cgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
279 $ ldafb, ipiv, work, n, info )
285 work( i ) = work( i ) / x( i )
292 work( i ) = work( i ) / x( i )
296 CALL cgbtrs(
'Conjugate transpose', n, kl, ku, 1, afb,
297 $ ldafb, ipiv, work, n, info )
299 CALL cgbtrs(
'No transpose', n, kl, ku, 1, afb, ldafb,
300 $ ipiv, work, n, info )
306 work( i ) = work( i ) * rwork( i )
314 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(SRNAME, INFO)
XERBLA
real function cla_gbrcond_x(TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB, IPIV, X, INFO, WORK, RWORK)
CLA_GBRCOND_X computes the infinity norm condition number of op(A)*diag(x) for general banded matrice...
subroutine cgbtrs(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
CGBTRS
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...