LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cgerc.f
Go to the documentation of this file.
1 *> \brief \b CGERC
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
12 *
13 * .. Scalar Arguments ..
14 * COMPLEX ALPHA
15 * INTEGER INCX,INCY,LDA,M,N
16 * ..
17 * .. Array Arguments ..
18 * COMPLEX A(LDA,*),X(*),Y(*)
19 * ..
20 *
21 *
22 *> \par Purpose:
23 * =============
24 *>
25 *> \verbatim
26 *>
27 *> CGERC performs the rank 1 operation
28 *>
29 *> A := alpha*x*y**H + A,
30 *>
31 *> where alpha is a scalar, x is an m element vector, y is an n element
32 *> vector and A is an m by n matrix.
33 *> \endverbatim
34 *
35 * Arguments:
36 * ==========
37 *
38 *> \param[in] M
39 *> \verbatim
40 *> M is INTEGER
41 *> On entry, M specifies the number of rows of the matrix A.
42 *> M must be at least zero.
43 *> \endverbatim
44 *>
45 *> \param[in] N
46 *> \verbatim
47 *> N is INTEGER
48 *> On entry, N specifies the number of columns of the matrix A.
49 *> N must be at least zero.
50 *> \endverbatim
51 *>
52 *> \param[in] ALPHA
53 *> \verbatim
54 *> ALPHA is COMPLEX
55 *> On entry, ALPHA specifies the scalar alpha.
56 *> \endverbatim
57 *>
58 *> \param[in] X
59 *> \verbatim
60 *> X is COMPLEX array of dimension at least
61 *> ( 1 + ( m - 1 )*abs( INCX ) ).
62 *> Before entry, the incremented array X must contain the m
63 *> element vector x.
64 *> \endverbatim
65 *>
66 *> \param[in] INCX
67 *> \verbatim
68 *> INCX is INTEGER
69 *> On entry, INCX specifies the increment for the elements of
70 *> X. INCX must not be zero.
71 *> \endverbatim
72 *>
73 *> \param[in] Y
74 *> \verbatim
75 *> Y is COMPLEX array of dimension at least
76 *> ( 1 + ( n - 1 )*abs( INCY ) ).
77 *> Before entry, the incremented array Y must contain the n
78 *> element vector y.
79 *> \endverbatim
80 *>
81 *> \param[in] INCY
82 *> \verbatim
83 *> INCY is INTEGER
84 *> On entry, INCY specifies the increment for the elements of
85 *> Y. INCY must not be zero.
86 *> \endverbatim
87 *>
88 *> \param[in,out] A
89 *> \verbatim
90 *> A is COMPLEX array of DIMENSION ( LDA, n ).
91 *> Before entry, the leading m by n part of the array A must
92 *> contain the matrix of coefficients. On exit, A is
93 *> overwritten by the updated matrix.
94 *> \endverbatim
95 *>
96 *> \param[in] LDA
97 *> \verbatim
98 *> LDA is INTEGER
99 *> On entry, LDA specifies the first dimension of A as declared
100 *> in the calling (sub) program. LDA must be at least
101 *> max( 1, m ).
102 *> \endverbatim
103 *
104 * Authors:
105 * ========
106 *
107 *> \author Univ. of Tennessee
108 *> \author Univ. of California Berkeley
109 *> \author Univ. of Colorado Denver
110 *> \author NAG Ltd.
111 *
112 *> \date November 2011
113 *
114 *> \ingroup complex_blas_level2
115 *
116 *> \par Further Details:
117 * =====================
118 *>
119 *> \verbatim
120 *>
121 *> Level 2 Blas routine.
122 *>
123 *> -- Written on 22-October-1986.
124 *> Jack Dongarra, Argonne National Lab.
125 *> Jeremy Du Croz, Nag Central Office.
126 *> Sven Hammarling, Nag Central Office.
127 *> Richard Hanson, Sandia National Labs.
128 *> \endverbatim
129 *>
130 * =====================================================================
131  SUBROUTINE cgerc(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
132 *
133 * -- Reference BLAS level2 routine (version 3.4.0) --
134 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
135 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136 * November 2011
137 *
138 * .. Scalar Arguments ..
139  COMPLEX ALPHA
140  INTEGER INCX,INCY,LDA,M,N
141 * ..
142 * .. Array Arguments ..
143  COMPLEX A(lda,*),X(*),Y(*)
144 * ..
145 *
146 * =====================================================================
147 *
148 * .. Parameters ..
149  COMPLEX ZERO
150  parameter(zero= (0.0e+0,0.0e+0))
151 * ..
152 * .. Local Scalars ..
153  COMPLEX TEMP
154  INTEGER I,INFO,IX,J,JY,KX
155 * ..
156 * .. External Subroutines ..
157  EXTERNAL xerbla
158 * ..
159 * .. Intrinsic Functions ..
160  INTRINSIC conjg,max
161 * ..
162 *
163 * Test the input parameters.
164 *
165  info = 0
166  IF (m.LT.0) THEN
167  info = 1
168  ELSE IF (n.LT.0) THEN
169  info = 2
170  ELSE IF (incx.EQ.0) THEN
171  info = 5
172  ELSE IF (incy.EQ.0) THEN
173  info = 7
174  ELSE IF (lda.LT.max(1,m)) THEN
175  info = 9
176  END IF
177  IF (info.NE.0) THEN
178  CALL xerbla('CGERC ',info)
179  RETURN
180  END IF
181 *
182 * Quick return if possible.
183 *
184  IF ((m.EQ.0) .OR. (n.EQ.0) .OR. (alpha.EQ.zero)) RETURN
185 *
186 * Start the operations. In this version the elements of A are
187 * accessed sequentially with one pass through A.
188 *
189  IF (incy.GT.0) THEN
190  jy = 1
191  ELSE
192  jy = 1 - (n-1)*incy
193  END IF
194  IF (incx.EQ.1) THEN
195  DO 20 j = 1,n
196  IF (y(jy).NE.zero) THEN
197  temp = alpha*conjg(y(jy))
198  DO 10 i = 1,m
199  a(i,j) = a(i,j) + x(i)*temp
200  10 CONTINUE
201  END IF
202  jy = jy + incy
203  20 CONTINUE
204  ELSE
205  IF (incx.GT.0) THEN
206  kx = 1
207  ELSE
208  kx = 1 - (m-1)*incx
209  END IF
210  DO 40 j = 1,n
211  IF (y(jy).NE.zero) THEN
212  temp = alpha*conjg(y(jy))
213  ix = kx
214  DO 30 i = 1,m
215  a(i,j) = a(i,j) + x(ix)*temp
216  ix = ix + incx
217  30 CONTINUE
218  END IF
219  jy = jy + incy
220  40 CONTINUE
221  END IF
222 *
223  RETURN
224 *
225 * End of CGERC .
226 *
227  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cgerc(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERC
Definition: cgerc.f:132