LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
ssyevr.f
Go to the documentation of this file.
1 *> \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SSYEVR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
22 * ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
23 * IWORK, LIWORK, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE, UPLO
27 * INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
28 * REAL ABSTOL, VL, VU
29 * ..
30 * .. Array Arguments ..
31 * INTEGER ISUPPZ( * ), IWORK( * )
32 * REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
33 * ..
34 *
35 *
36 *> \par Purpose:
37 * =============
38 *>
39 *> \verbatim
40 *>
41 *> SSYEVR computes selected eigenvalues and, optionally, eigenvectors
42 *> of a real symmetric matrix A. Eigenvalues and eigenvectors can be
43 *> selected by specifying either a range of values or a range of
44 *> indices for the desired eigenvalues.
45 *>
46 *> SSYEVR first reduces the matrix A to tridiagonal form T with a call
47 *> to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute
48 *> the eigenspectrum using Relatively Robust Representations. SSTEMR
49 *> computes eigenvalues by the dqds algorithm, while orthogonal
50 *> eigenvectors are computed from various "good" L D L^T representations
51 *> (also known as Relatively Robust Representations). Gram-Schmidt
52 *> orthogonalization is avoided as far as possible. More specifically,
53 *> the various steps of the algorithm are as follows.
54 *>
55 *> For each unreduced block (submatrix) of T,
56 *> (a) Compute T - sigma I = L D L^T, so that L and D
57 *> define all the wanted eigenvalues to high relative accuracy.
58 *> This means that small relative changes in the entries of D and L
59 *> cause only small relative changes in the eigenvalues and
60 *> eigenvectors. The standard (unfactored) representation of the
61 *> tridiagonal matrix T does not have this property in general.
62 *> (b) Compute the eigenvalues to suitable accuracy.
63 *> If the eigenvectors are desired, the algorithm attains full
64 *> accuracy of the computed eigenvalues only right before
65 *> the corresponding vectors have to be computed, see steps c) and d).
66 *> (c) For each cluster of close eigenvalues, select a new
67 *> shift close to the cluster, find a new factorization, and refine
68 *> the shifted eigenvalues to suitable accuracy.
69 *> (d) For each eigenvalue with a large enough relative separation compute
70 *> the corresponding eigenvector by forming a rank revealing twisted
71 *> factorization. Go back to (c) for any clusters that remain.
72 *>
73 *> The desired accuracy of the output can be specified by the input
74 *> parameter ABSTOL.
75 *>
76 *> For more details, see SSTEMR's documentation and:
77 *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
78 *> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
79 *> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
80 *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
81 *> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
82 *> 2004. Also LAPACK Working Note 154.
83 *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
84 *> tridiagonal eigenvalue/eigenvector problem",
85 *> Computer Science Division Technical Report No. UCB/CSD-97-971,
86 *> UC Berkeley, May 1997.
87 *>
88 *>
89 *> Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
90 *> on machines which conform to the ieee-754 floating point standard.
91 *> SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
92 *> when partial spectrum requests are made.
93 *>
94 *> Normal execution of SSTEMR may create NaNs and infinities and
95 *> hence may abort due to a floating point exception in environments
96 *> which do not handle NaNs and infinities in the ieee standard default
97 *> manner.
98 *> \endverbatim
99 *
100 * Arguments:
101 * ==========
102 *
103 *> \param[in] JOBZ
104 *> \verbatim
105 *> JOBZ is CHARACTER*1
106 *> = 'N': Compute eigenvalues only;
107 *> = 'V': Compute eigenvalues and eigenvectors.
108 *> \endverbatim
109 *>
110 *> \param[in] RANGE
111 *> \verbatim
112 *> RANGE is CHARACTER*1
113 *> = 'A': all eigenvalues will be found.
114 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
115 *> will be found.
116 *> = 'I': the IL-th through IU-th eigenvalues will be found.
117 *> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
118 *> SSTEIN are called
119 *> \endverbatim
120 *>
121 *> \param[in] UPLO
122 *> \verbatim
123 *> UPLO is CHARACTER*1
124 *> = 'U': Upper triangle of A is stored;
125 *> = 'L': Lower triangle of A is stored.
126 *> \endverbatim
127 *>
128 *> \param[in] N
129 *> \verbatim
130 *> N is INTEGER
131 *> The order of the matrix A. N >= 0.
132 *> \endverbatim
133 *>
134 *> \param[in,out] A
135 *> \verbatim
136 *> A is REAL array, dimension (LDA, N)
137 *> On entry, the symmetric matrix A. If UPLO = 'U', the
138 *> leading N-by-N upper triangular part of A contains the
139 *> upper triangular part of the matrix A. If UPLO = 'L',
140 *> the leading N-by-N lower triangular part of A contains
141 *> the lower triangular part of the matrix A.
142 *> On exit, the lower triangle (if UPLO='L') or the upper
143 *> triangle (if UPLO='U') of A, including the diagonal, is
144 *> destroyed.
145 *> \endverbatim
146 *>
147 *> \param[in] LDA
148 *> \verbatim
149 *> LDA is INTEGER
150 *> The leading dimension of the array A. LDA >= max(1,N).
151 *> \endverbatim
152 *>
153 *> \param[in] VL
154 *> \verbatim
155 *> VL is REAL
156 *> If RANGE='V', the lower bound of the interval to
157 *> be searched for eigenvalues. VL < VU.
158 *> Not referenced if RANGE = 'A' or 'I'.
159 *> \endverbatim
160 *>
161 *> \param[in] VU
162 *> \verbatim
163 *> VU is REAL
164 *> If RANGE='V', the upper bound of the interval to
165 *> be searched for eigenvalues. VL < VU.
166 *> Not referenced if RANGE = 'A' or 'I'.
167 *> \endverbatim
168 *>
169 *> \param[in] IL
170 *> \verbatim
171 *> IL is INTEGER
172 *> If RANGE='I', the index of the
173 *> smallest eigenvalue to be returned.
174 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
175 *> Not referenced if RANGE = 'A' or 'V'.
176 *> \endverbatim
177 *>
178 *> \param[in] IU
179 *> \verbatim
180 *> IU is INTEGER
181 *> If RANGE='I', the index of the
182 *> largest eigenvalue to be returned.
183 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
184 *> Not referenced if RANGE = 'A' or 'V'.
185 *> \endverbatim
186 *>
187 *> \param[in] ABSTOL
188 *> \verbatim
189 *> ABSTOL is REAL
190 *> The absolute error tolerance for the eigenvalues.
191 *> An approximate eigenvalue is accepted as converged
192 *> when it is determined to lie in an interval [a,b]
193 *> of width less than or equal to
194 *>
195 *> ABSTOL + EPS * max( |a|,|b| ) ,
196 *>
197 *> where EPS is the machine precision. If ABSTOL is less than
198 *> or equal to zero, then EPS*|T| will be used in its place,
199 *> where |T| is the 1-norm of the tridiagonal matrix obtained
200 *> by reducing A to tridiagonal form.
201 *>
202 *> See "Computing Small Singular Values of Bidiagonal Matrices
203 *> with Guaranteed High Relative Accuracy," by Demmel and
204 *> Kahan, LAPACK Working Note #3.
205 *>
206 *> If high relative accuracy is important, set ABSTOL to
207 *> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
208 *> eigenvalues are computed to high relative accuracy when
209 *> possible in future releases. The current code does not
210 *> make any guarantees about high relative accuracy, but
211 *> future releases will. See J. Barlow and J. Demmel,
212 *> "Computing Accurate Eigensystems of Scaled Diagonally
213 *> Dominant Matrices", LAPACK Working Note #7, for a discussion
214 *> of which matrices define their eigenvalues to high relative
215 *> accuracy.
216 *> \endverbatim
217 *>
218 *> \param[out] M
219 *> \verbatim
220 *> M is INTEGER
221 *> The total number of eigenvalues found. 0 <= M <= N.
222 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
223 *> \endverbatim
224 *>
225 *> \param[out] W
226 *> \verbatim
227 *> W is REAL array, dimension (N)
228 *> The first M elements contain the selected eigenvalues in
229 *> ascending order.
230 *> \endverbatim
231 *>
232 *> \param[out] Z
233 *> \verbatim
234 *> Z is REAL array, dimension (LDZ, max(1,M))
235 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
236 *> contain the orthonormal eigenvectors of the matrix A
237 *> corresponding to the selected eigenvalues, with the i-th
238 *> column of Z holding the eigenvector associated with W(i).
239 *> If JOBZ = 'N', then Z is not referenced.
240 *> Note: the user must ensure that at least max(1,M) columns are
241 *> supplied in the array Z; if RANGE = 'V', the exact value of M
242 *> is not known in advance and an upper bound must be used.
243 *> Supplying N columns is always safe.
244 *> \endverbatim
245 *>
246 *> \param[in] LDZ
247 *> \verbatim
248 *> LDZ is INTEGER
249 *> The leading dimension of the array Z. LDZ >= 1, and if
250 *> JOBZ = 'V', LDZ >= max(1,N).
251 *> \endverbatim
252 *>
253 *> \param[out] ISUPPZ
254 *> \verbatim
255 *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
256 *> The support of the eigenvectors in Z, i.e., the indices
257 *> indicating the nonzero elements in Z. The i-th eigenvector
258 *> is nonzero only in elements ISUPPZ( 2*i-1 ) through
259 *> ISUPPZ( 2*i ).
260 *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
261 *> \endverbatim
262 *>
263 *> \param[out] WORK
264 *> \verbatim
265 *> WORK is REAL array, dimension (MAX(1,LWORK))
266 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
267 *> \endverbatim
268 *>
269 *> \param[in] LWORK
270 *> \verbatim
271 *> LWORK is INTEGER
272 *> The dimension of the array WORK. LWORK >= max(1,26*N).
273 *> For optimal efficiency, LWORK >= (NB+6)*N,
274 *> where NB is the max of the blocksize for SSYTRD and SORMTR
275 *> returned by ILAENV.
276 *>
277 *> If LWORK = -1, then a workspace query is assumed; the routine
278 *> only calculates the optimal sizes of the WORK and IWORK
279 *> arrays, returns these values as the first entries of the WORK
280 *> and IWORK arrays, and no error message related to LWORK or
281 *> LIWORK is issued by XERBLA.
282 *> \endverbatim
283 *>
284 *> \param[out] IWORK
285 *> \verbatim
286 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
287 *> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
288 *> \endverbatim
289 *>
290 *> \param[in] LIWORK
291 *> \verbatim
292 *> LIWORK is INTEGER
293 *> The dimension of the array IWORK. LIWORK >= max(1,10*N).
294 *>
295 *> If LIWORK = -1, then a workspace query is assumed; the
296 *> routine only calculates the optimal sizes of the WORK and
297 *> IWORK arrays, returns these values as the first entries of
298 *> the WORK and IWORK arrays, and no error message related to
299 *> LWORK or LIWORK is issued by XERBLA.
300 *> \endverbatim
301 *>
302 *> \param[out] INFO
303 *> \verbatim
304 *> INFO is INTEGER
305 *> = 0: successful exit
306 *> < 0: if INFO = -i, the i-th argument had an illegal value
307 *> > 0: Internal error
308 *> \endverbatim
309 *
310 * Authors:
311 * ========
312 *
313 *> \author Univ. of Tennessee
314 *> \author Univ. of California Berkeley
315 *> \author Univ. of Colorado Denver
316 *> \author NAG Ltd.
317 *
318 *> \date June 2016
319 *
320 *> \ingroup realSYeigen
321 *
322 *> \par Contributors:
323 * ==================
324 *>
325 *> Inderjit Dhillon, IBM Almaden, USA \n
326 *> Osni Marques, LBNL/NERSC, USA \n
327 *> Ken Stanley, Computer Science Division, University of
328 *> California at Berkeley, USA \n
329 *> Jason Riedy, Computer Science Division, University of
330 *> California at Berkeley, USA \n
331 *>
332 * =====================================================================
333  SUBROUTINE ssyevr( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
334  $ abstol, m, w, z, ldz, isuppz, work, lwork,
335  $ iwork, liwork, info )
336 *
337 * -- LAPACK driver routine (version 3.6.1) --
338 * -- LAPACK is a software package provided by Univ. of Tennessee, --
339 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
340 * June 2016
341 *
342 * .. Scalar Arguments ..
343  CHARACTER JOBZ, RANGE, UPLO
344  INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
345  REAL ABSTOL, VL, VU
346 * ..
347 * .. Array Arguments ..
348  INTEGER ISUPPZ( * ), IWORK( * )
349  REAL A( lda, * ), W( * ), WORK( * ), Z( ldz, * )
350 * ..
351 *
352 * =====================================================================
353 *
354 * .. Parameters ..
355  REAL ZERO, ONE, TWO
356  parameter ( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
357 * ..
358 * .. Local Scalars ..
359  LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
360  $ wantz, tryrac
361  CHARACTER ORDER
362  INTEGER I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
363  $ indee, indibl, indifl, indisp, indiwo, indtau,
364  $ indwk, indwkn, iscale, j, jj, liwmin,
365  $ llwork, llwrkn, lwkopt, lwmin, nb, nsplit
366  REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
367  $ sigma, smlnum, tmp1, vll, vuu
368 * ..
369 * .. External Functions ..
370  LOGICAL LSAME
371  INTEGER ILAENV
372  REAL SLAMCH, SLANSY
373  EXTERNAL lsame, ilaenv, slamch, slansy
374 * ..
375 * .. External Subroutines ..
376  EXTERNAL scopy, sormtr, sscal, sstebz, sstemr, sstein,
378 * ..
379 * .. Intrinsic Functions ..
380  INTRINSIC max, min, sqrt
381 * ..
382 * .. Executable Statements ..
383 *
384 * Test the input parameters.
385 *
386  ieeeok = ilaenv( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
387 *
388  lower = lsame( uplo, 'L' )
389  wantz = lsame( jobz, 'V' )
390  alleig = lsame( range, 'A' )
391  valeig = lsame( range, 'V' )
392  indeig = lsame( range, 'I' )
393 *
394  lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
395 *
396  lwmin = max( 1, 26*n )
397  liwmin = max( 1, 10*n )
398 *
399  info = 0
400  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
401  info = -1
402  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
403  info = -2
404  ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
405  info = -3
406  ELSE IF( n.LT.0 ) THEN
407  info = -4
408  ELSE IF( lda.LT.max( 1, n ) ) THEN
409  info = -6
410  ELSE
411  IF( valeig ) THEN
412  IF( n.GT.0 .AND. vu.LE.vl )
413  $ info = -8
414  ELSE IF( indeig ) THEN
415  IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
416  info = -9
417  ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
418  info = -10
419  END IF
420  END IF
421  END IF
422  IF( info.EQ.0 ) THEN
423  IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
424  info = -15
425  END IF
426  END IF
427 *
428  IF( info.EQ.0 ) THEN
429  nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
430  nb = max( nb, ilaenv( 1, 'SORMTR', uplo, n, -1, -1, -1 ) )
431  lwkopt = max( ( nb+1 )*n, lwmin )
432  work( 1 ) = lwkopt
433  iwork( 1 ) = liwmin
434 *
435  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
436  info = -18
437  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
438  info = -20
439  END IF
440  END IF
441 *
442  IF( info.NE.0 ) THEN
443  CALL xerbla( 'SSYEVR', -info )
444  RETURN
445  ELSE IF( lquery ) THEN
446  RETURN
447  END IF
448 *
449 * Quick return if possible
450 *
451  m = 0
452  IF( n.EQ.0 ) THEN
453  work( 1 ) = 1
454  RETURN
455  END IF
456 *
457  IF( n.EQ.1 ) THEN
458  work( 1 ) = 26
459  IF( alleig .OR. indeig ) THEN
460  m = 1
461  w( 1 ) = a( 1, 1 )
462  ELSE
463  IF( vl.LT.a( 1, 1 ) .AND. vu.GE.a( 1, 1 ) ) THEN
464  m = 1
465  w( 1 ) = a( 1, 1 )
466  END IF
467  END IF
468  IF( wantz ) THEN
469  z( 1, 1 ) = one
470  isuppz( 1 ) = 1
471  isuppz( 2 ) = 1
472  END IF
473  RETURN
474  END IF
475 *
476 * Get machine constants.
477 *
478  safmin = slamch( 'Safe minimum' )
479  eps = slamch( 'Precision' )
480  smlnum = safmin / eps
481  bignum = one / smlnum
482  rmin = sqrt( smlnum )
483  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
484 *
485 * Scale matrix to allowable range, if necessary.
486 *
487  iscale = 0
488  abstll = abstol
489  IF (valeig) THEN
490  vll = vl
491  vuu = vu
492  END IF
493  anrm = slansy( 'M', uplo, n, a, lda, work )
494  IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
495  iscale = 1
496  sigma = rmin / anrm
497  ELSE IF( anrm.GT.rmax ) THEN
498  iscale = 1
499  sigma = rmax / anrm
500  END IF
501  IF( iscale.EQ.1 ) THEN
502  IF( lower ) THEN
503  DO 10 j = 1, n
504  CALL sscal( n-j+1, sigma, a( j, j ), 1 )
505  10 CONTINUE
506  ELSE
507  DO 20 j = 1, n
508  CALL sscal( j, sigma, a( 1, j ), 1 )
509  20 CONTINUE
510  END IF
511  IF( abstol.GT.0 )
512  $ abstll = abstol*sigma
513  IF( valeig ) THEN
514  vll = vl*sigma
515  vuu = vu*sigma
516  END IF
517  END IF
518 
519 * Initialize indices into workspaces. Note: The IWORK indices are
520 * used only if SSTERF or SSTEMR fail.
521 
522 * WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
523 * elementary reflectors used in SSYTRD.
524  indtau = 1
525 * WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
526  indd = indtau + n
527 * WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
528 * tridiagonal matrix from SSYTRD.
529  inde = indd + n
530 * WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
531 * -written by SSTEMR (the SSTERF path copies the diagonal to W).
532  inddd = inde + n
533 * WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
534 * -written while computing the eigenvalues in SSTERF and SSTEMR.
535  indee = inddd + n
536 * INDWK is the starting offset of the left-over workspace, and
537 * LLWORK is the remaining workspace size.
538  indwk = indee + n
539  llwork = lwork - indwk + 1
540 
541 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
542 * stores the block indices of each of the M<=N eigenvalues.
543  indibl = 1
544 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
545 * stores the starting and finishing indices of each block.
546  indisp = indibl + n
547 * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
548 * that corresponding to eigenvectors that fail to converge in
549 * SSTEIN. This information is discarded; if any fail, the driver
550 * returns INFO > 0.
551  indifl = indisp + n
552 * INDIWO is the offset of the remaining integer workspace.
553  indiwo = indifl + n
554 
555 *
556 * Call SSYTRD to reduce symmetric matrix to tridiagonal form.
557 *
558  CALL ssytrd( uplo, n, a, lda, work( indd ), work( inde ),
559  $ work( indtau ), work( indwk ), llwork, iinfo )
560 *
561 * If all eigenvalues are desired
562 * then call SSTERF or SSTEMR and SORMTR.
563 *
564  test = .false.
565  IF( indeig ) THEN
566  IF( il.EQ.1 .AND. iu.EQ.n ) THEN
567  test = .true.
568  END IF
569  END IF
570  IF( ( alleig.OR.test ) .AND. ( ieeeok.EQ.1 ) ) THEN
571  IF( .NOT.wantz ) THEN
572  CALL scopy( n, work( indd ), 1, w, 1 )
573  CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
574  CALL ssterf( n, w, work( indee ), info )
575  ELSE
576  CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
577  CALL scopy( n, work( indd ), 1, work( inddd ), 1 )
578 *
579  IF (abstol .LE. two*n*eps) THEN
580  tryrac = .true.
581  ELSE
582  tryrac = .false.
583  END IF
584  CALL sstemr( jobz, 'A', n, work( inddd ), work( indee ),
585  $ vl, vu, il, iu, m, w, z, ldz, n, isuppz,
586  $ tryrac, work( indwk ), lwork, iwork, liwork,
587  $ info )
588 *
589 *
590 *
591 * Apply orthogonal matrix used in reduction to tridiagonal
592 * form to eigenvectors returned by SSTEIN.
593 *
594  IF( wantz .AND. info.EQ.0 ) THEN
595  indwkn = inde
596  llwrkn = lwork - indwkn + 1
597  CALL sormtr( 'L', uplo, 'N', n, m, a, lda,
598  $ work( indtau ), z, ldz, work( indwkn ),
599  $ llwrkn, iinfo )
600  END IF
601  END IF
602 *
603 *
604  IF( info.EQ.0 ) THEN
605 * Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are
606 * undefined.
607  m = n
608  GO TO 30
609  END IF
610  info = 0
611  END IF
612 *
613 * Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
614 * Also call SSTEBZ and SSTEIN if SSTEMR fails.
615 *
616  IF( wantz ) THEN
617  order = 'B'
618  ELSE
619  order = 'E'
620  END IF
621 
622  CALL sstebz( range, order, n, vll, vuu, il, iu, abstll,
623  $ work( indd ), work( inde ), m, nsplit, w,
624  $ iwork( indibl ), iwork( indisp ), work( indwk ),
625  $ iwork( indiwo ), info )
626 *
627  IF( wantz ) THEN
628  CALL sstein( n, work( indd ), work( inde ), m, w,
629  $ iwork( indibl ), iwork( indisp ), z, ldz,
630  $ work( indwk ), iwork( indiwo ), iwork( indifl ),
631  $ info )
632 *
633 * Apply orthogonal matrix used in reduction to tridiagonal
634 * form to eigenvectors returned by SSTEIN.
635 *
636  indwkn = inde
637  llwrkn = lwork - indwkn + 1
638  CALL sormtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ), z,
639  $ ldz, work( indwkn ), llwrkn, iinfo )
640  END IF
641 *
642 * If matrix was scaled, then rescale eigenvalues appropriately.
643 *
644 * Jump here if SSTEMR/SSTEIN succeeded.
645  30 CONTINUE
646  IF( iscale.EQ.1 ) THEN
647  IF( info.EQ.0 ) THEN
648  imax = m
649  ELSE
650  imax = info - 1
651  END IF
652  CALL sscal( imax, one / sigma, w, 1 )
653  END IF
654 *
655 * If eigenvalues are not in order, then sort them, along with
656 * eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
657 * It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
658 * not return this detailed information to the user.
659 *
660  IF( wantz ) THEN
661  DO 50 j = 1, m - 1
662  i = 0
663  tmp1 = w( j )
664  DO 40 jj = j + 1, m
665  IF( w( jj ).LT.tmp1 ) THEN
666  i = jj
667  tmp1 = w( jj )
668  END IF
669  40 CONTINUE
670 *
671  IF( i.NE.0 ) THEN
672  w( i ) = w( j )
673  w( j ) = tmp1
674  CALL sswap( n, z( 1, i ), 1, z( 1, j ), 1 )
675  END IF
676  50 CONTINUE
677  END IF
678 *
679 * Set WORK(1) to optimal workspace size.
680 *
681  work( 1 ) = lwkopt
682  iwork( 1 ) = liwmin
683 *
684  RETURN
685 *
686 * End of SSYEVR
687 *
688  END
subroutine sstebz(RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
SSTEBZ
Definition: sstebz.f:275
subroutine ssyevr(JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices ...
Definition: ssyevr.f:336
subroutine sstein(N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSTEIN
Definition: sstein.f:176
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine ssytrd(UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
SSYTRD
Definition: ssytrd.f:194
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55
subroutine sswap(N, SX, INCX, SY, INCY)
SSWAP
Definition: sswap.f:53
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:88
subroutine sstemr(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEMR
Definition: sstemr.f:323
subroutine sormtr(SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMTR
Definition: sormtr.f:174
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53