LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
slahrd.f
Go to the documentation of this file.
1 *> \brief \b SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SLAHRD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahrd.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahrd.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahrd.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER K, LDA, LDT, LDY, N, NB
25 * ..
26 * .. Array Arguments ..
27 * REAL A( LDA, * ), T( LDT, NB ), TAU( NB ),
28 * $ Y( LDY, NB )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> This routine is deprecated and has been replaced by routine SLAHR2.
38 *>
39 *> SLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
40 *> matrix A so that elements below the k-th subdiagonal are zero. The
41 *> reduction is performed by an orthogonal similarity transformation
42 *> Q**T * A * Q. The routine returns the matrices V and T which determine
43 *> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
44 *> \endverbatim
45 *
46 * Arguments:
47 * ==========
48 *
49 *> \param[in] N
50 *> \verbatim
51 *> N is INTEGER
52 *> The order of the matrix A.
53 *> \endverbatim
54 *>
55 *> \param[in] K
56 *> \verbatim
57 *> K is INTEGER
58 *> The offset for the reduction. Elements below the k-th
59 *> subdiagonal in the first NB columns are reduced to zero.
60 *> \endverbatim
61 *>
62 *> \param[in] NB
63 *> \verbatim
64 *> NB is INTEGER
65 *> The number of columns to be reduced.
66 *> \endverbatim
67 *>
68 *> \param[in,out] A
69 *> \verbatim
70 *> A is REAL array, dimension (LDA,N-K+1)
71 *> On entry, the n-by-(n-k+1) general matrix A.
72 *> On exit, the elements on and above the k-th subdiagonal in
73 *> the first NB columns are overwritten with the corresponding
74 *> elements of the reduced matrix; the elements below the k-th
75 *> subdiagonal, with the array TAU, represent the matrix Q as a
76 *> product of elementary reflectors. The other columns of A are
77 *> unchanged. See Further Details.
78 *> \endverbatim
79 *>
80 *> \param[in] LDA
81 *> \verbatim
82 *> LDA is INTEGER
83 *> The leading dimension of the array A. LDA >= max(1,N).
84 *> \endverbatim
85 *>
86 *> \param[out] TAU
87 *> \verbatim
88 *> TAU is REAL array, dimension (NB)
89 *> The scalar factors of the elementary reflectors. See Further
90 *> Details.
91 *> \endverbatim
92 *>
93 *> \param[out] T
94 *> \verbatim
95 *> T is REAL array, dimension (LDT,NB)
96 *> The upper triangular matrix T.
97 *> \endverbatim
98 *>
99 *> \param[in] LDT
100 *> \verbatim
101 *> LDT is INTEGER
102 *> The leading dimension of the array T. LDT >= NB.
103 *> \endverbatim
104 *>
105 *> \param[out] Y
106 *> \verbatim
107 *> Y is REAL array, dimension (LDY,NB)
108 *> The n-by-nb matrix Y.
109 *> \endverbatim
110 *>
111 *> \param[in] LDY
112 *> \verbatim
113 *> LDY is INTEGER
114 *> The leading dimension of the array Y. LDY >= N.
115 *> \endverbatim
116 *
117 * Authors:
118 * ========
119 *
120 *> \author Univ. of Tennessee
121 *> \author Univ. of California Berkeley
122 *> \author Univ. of Colorado Denver
123 *> \author NAG Ltd.
124 *
125 *> \date November 2015
126 *
127 *> \ingroup realOTHERauxiliary
128 *
129 *> \par Further Details:
130 * =====================
131 *>
132 *> \verbatim
133 *>
134 *> The matrix Q is represented as a product of nb elementary reflectors
135 *>
136 *> Q = H(1) H(2) . . . H(nb).
137 *>
138 *> Each H(i) has the form
139 *>
140 *> H(i) = I - tau * v * v**T
141 *>
142 *> where tau is a real scalar, and v is a real vector with
143 *> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
144 *> A(i+k+1:n,i), and tau in TAU(i).
145 *>
146 *> The elements of the vectors v together form the (n-k+1)-by-nb matrix
147 *> V which is needed, with T and Y, to apply the transformation to the
148 *> unreduced part of the matrix, using an update of the form:
149 *> A := (I - V*T*V**T) * (A - Y*V**T).
150 *>
151 *> The contents of A on exit are illustrated by the following example
152 *> with n = 7, k = 3 and nb = 2:
153 *>
154 *> ( a h a a a )
155 *> ( a h a a a )
156 *> ( a h a a a )
157 *> ( h h a a a )
158 *> ( v1 h a a a )
159 *> ( v1 v2 a a a )
160 *> ( v1 v2 a a a )
161 *>
162 *> where a denotes an element of the original matrix A, h denotes a
163 *> modified element of the upper Hessenberg matrix H, and vi denotes an
164 *> element of the vector defining H(i).
165 *> \endverbatim
166 *>
167 * =====================================================================
168  SUBROUTINE slahrd( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
169 *
170 * -- LAPACK auxiliary routine (version 3.6.0) --
171 * -- LAPACK is a software package provided by Univ. of Tennessee, --
172 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173 * November 2015
174 *
175 * .. Scalar Arguments ..
176  INTEGER K, LDA, LDT, LDY, N, NB
177 * ..
178 * .. Array Arguments ..
179  REAL A( lda, * ), T( ldt, nb ), TAU( nb ),
180  $ y( ldy, nb )
181 * ..
182 *
183 * =====================================================================
184 *
185 * .. Parameters ..
186  REAL ZERO, ONE
187  parameter ( zero = 0.0e+0, one = 1.0e+0 )
188 * ..
189 * .. Local Scalars ..
190  INTEGER I
191  REAL EI
192 * ..
193 * .. External Subroutines ..
194  EXTERNAL saxpy, scopy, sgemv, slarfg, sscal, strmv
195 * ..
196 * .. Intrinsic Functions ..
197  INTRINSIC min
198 * ..
199 * .. Executable Statements ..
200 *
201 * Quick return if possible
202 *
203  IF( n.LE.1 )
204  $ RETURN
205 *
206  DO 10 i = 1, nb
207  IF( i.GT.1 ) THEN
208 *
209 * Update A(1:n,i)
210 *
211 * Compute i-th column of A - Y * V**T
212 *
213  CALL sgemv( 'No transpose', n, i-1, -one, y, ldy,
214  $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
215 *
216 * Apply I - V * T**T * V**T to this column (call it b) from the
217 * left, using the last column of T as workspace
218 *
219 * Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
220 * ( V2 ) ( b2 )
221 *
222 * where V1 is unit lower triangular
223 *
224 * w := V1**T * b1
225 *
226  CALL scopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
227  CALL strmv( 'Lower', 'Transpose', 'Unit', i-1, a( k+1, 1 ),
228  $ lda, t( 1, nb ), 1 )
229 *
230 * w := w + V2**T *b2
231 *
232  CALL sgemv( 'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ),
233  $ lda, a( k+i, i ), 1, one, t( 1, nb ), 1 )
234 *
235 * w := T**T *w
236 *
237  CALL strmv( 'Upper', 'Transpose', 'Non-unit', i-1, t, ldt,
238  $ t( 1, nb ), 1 )
239 *
240 * b2 := b2 - V2*w
241 *
242  CALL sgemv( 'No transpose', n-k-i+1, i-1, -one, a( k+i, 1 ),
243  $ lda, t( 1, nb ), 1, one, a( k+i, i ), 1 )
244 *
245 * b1 := b1 - V1*w
246 *
247  CALL strmv( 'Lower', 'No transpose', 'Unit', i-1,
248  $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
249  CALL saxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
250 *
251  a( k+i-1, i-1 ) = ei
252  END IF
253 *
254 * Generate the elementary reflector H(i) to annihilate
255 * A(k+i+1:n,i)
256 *
257  CALL slarfg( n-k-i+1, a( k+i, i ), a( min( k+i+1, n ), i ), 1,
258  $ tau( i ) )
259  ei = a( k+i, i )
260  a( k+i, i ) = one
261 *
262 * Compute Y(1:n,i)
263 *
264  CALL sgemv( 'No transpose', n, n-k-i+1, one, a( 1, i+1 ), lda,
265  $ a( k+i, i ), 1, zero, y( 1, i ), 1 )
266  CALL sgemv( 'Transpose', n-k-i+1, i-1, one, a( k+i, 1 ), lda,
267  $ a( k+i, i ), 1, zero, t( 1, i ), 1 )
268  CALL sgemv( 'No transpose', n, i-1, -one, y, ldy, t( 1, i ), 1,
269  $ one, y( 1, i ), 1 )
270  CALL sscal( n, tau( i ), y( 1, i ), 1 )
271 *
272 * Compute T(1:i,i)
273 *
274  CALL sscal( i-1, -tau( i ), t( 1, i ), 1 )
275  CALL strmv( 'Upper', 'No transpose', 'Non-unit', i-1, t, ldt,
276  $ t( 1, i ), 1 )
277  t( i, i ) = tau( i )
278 *
279  10 CONTINUE
280  a( k+nb, nb ) = ei
281 *
282  RETURN
283 *
284 * End of SLAHRD
285 *
286  END
subroutine slarfg(N, ALPHA, X, INCX, TAU)
SLARFG generates an elementary reflector (Householder matrix).
Definition: slarfg.f:108
subroutine sgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV
Definition: sgemv.f:158
subroutine strmv(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
STRMV
Definition: strmv.f:149
subroutine saxpy(N, SA, SX, INCX, SY, INCY)
SAXPY
Definition: saxpy.f:54
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:55
subroutine slahrd(N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th...
Definition: slahrd.f:169
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53