LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
zerrps.f
Go to the documentation of this file.
1 *> \brief \b ZERRPS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZERRPS( PATH, NUNIT )
12 *
13 * .. Scalar Arguments ..
14 * INTEGER NUNIT
15 * CHARACTER*3 PATH
16 * ..
17 *
18 *
19 *> \par Purpose:
20 * =============
21 *>
22 *> \verbatim
23 *>
24 *> ZERRPS tests the error exits for the COMPLEX routines
25 *> for ZPSTRF.
26 *> \endverbatim
27 *
28 * Arguments:
29 * ==========
30 *
31 *> \param[in] PATH
32 *> \verbatim
33 *> PATH is CHARACTER*3
34 *> The LAPACK path name for the routines to be tested.
35 *> \endverbatim
36 *>
37 *> \param[in] NUNIT
38 *> \verbatim
39 *> NUNIT is INTEGER
40 *> The unit number for output.
41 *> \endverbatim
42 *
43 * Authors:
44 * ========
45 *
46 *> \author Univ. of Tennessee
47 *> \author Univ. of California Berkeley
48 *> \author Univ. of Colorado Denver
49 *> \author NAG Ltd.
50 *
51 *> \date November 2011
52 *
53 *> \ingroup complex16_lin
54 *
55 * =====================================================================
56  SUBROUTINE zerrps( PATH, NUNIT )
57 *
58 * -- LAPACK test routine (version 3.4.0) --
59 * -- LAPACK is a software package provided by Univ. of Tennessee, --
60 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
61 * November 2011
62 *
63 * .. Scalar Arguments ..
64  INTEGER NUNIT
65  CHARACTER*3 PATH
66 * ..
67 *
68 * =====================================================================
69 *
70 * .. Parameters ..
71  INTEGER NMAX
72  parameter ( nmax = 4 )
73 * ..
74 * .. Local Scalars ..
75  INTEGER I, INFO, J, RANK
76 * ..
77 * .. Local Arrays ..
78  COMPLEX*16 A( nmax, nmax )
79  DOUBLE PRECISION RWORK( 2*nmax )
80  INTEGER PIV( nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, zpstf2, zpstrf
84 * ..
85 * .. Scalars in Common ..
86  INTEGER INFOT, NOUT
87  LOGICAL LERR, OK
88  CHARACTER*32 SRNAMT
89 * ..
90 * .. Common blocks ..
91  COMMON / infoc / infot, nout, ok, lerr
92  COMMON / srnamc / srnamt
93 * ..
94 * .. Intrinsic Functions ..
95  INTRINSIC dble
96 * ..
97 * .. Executable Statements ..
98 *
99  nout = nunit
100  WRITE( nout, fmt = * )
101 *
102 * Set the variables to innocuous values.
103 *
104  DO 110 j = 1, nmax
105  DO 100 i = 1, nmax
106  a( i, j ) = 1.d0 / dble( i+j )
107 *
108  100 CONTINUE
109  piv( j ) = j
110  rwork( j ) = 0.d0
111  rwork( nmax+j ) = 0.d0
112 *
113  110 CONTINUE
114  ok = .true.
115 *
116 *
117 * Test error exits of the routines that use the Cholesky
118 * decomposition of an Hermitian positive semidefinite matrix.
119 *
120 * ZPSTRF
121 *
122  srnamt = 'ZPSTRF'
123  infot = 1
124  CALL zpstrf( '/', 0, a, 1, piv, rank, -1.d0, rwork, info )
125  CALL chkxer( 'ZPSTRF', infot, nout, lerr, ok )
126  infot = 2
127  CALL zpstrf( 'U', -1, a, 1, piv, rank, -1.d0, rwork, info )
128  CALL chkxer( 'ZPSTRF', infot, nout, lerr, ok )
129  infot = 4
130  CALL zpstrf( 'U', 2, a, 1, piv, rank, -1.d0, rwork, info )
131  CALL chkxer( 'ZPSTRF', infot, nout, lerr, ok )
132 *
133 * ZPSTF2
134 *
135  srnamt = 'ZPSTF2'
136  infot = 1
137  CALL zpstf2( '/', 0, a, 1, piv, rank, -1.d0, rwork, info )
138  CALL chkxer( 'ZPSTF2', infot, nout, lerr, ok )
139  infot = 2
140  CALL zpstf2( 'U', -1, a, 1, piv, rank, -1.d0, rwork, info )
141  CALL chkxer( 'ZPSTF2', infot, nout, lerr, ok )
142  infot = 4
143  CALL zpstf2( 'U', 2, a, 1, piv, rank, -1.d0, rwork, info )
144  CALL chkxer( 'ZPSTF2', infot, nout, lerr, ok )
145 *
146 *
147 * Print a summary line.
148 *
149  CALL alaesm( path, ok, nout )
150 *
151  RETURN
152 *
153 * End of ZERRPS
154 *
155  END
subroutine zerrps(PATH, NUNIT)
ZERRPS
Definition: zerrps.f:57
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine zpstf2(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive sem...
Definition: zpstf2.f:144
subroutine zpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positive sem...
Definition: zpstrf.f:144