LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
sgtcon.f
Go to the documentation of this file.
1 *> \brief \b SGTCON
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SGTCON + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtcon.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtcon.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtcon.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
22 * WORK, IWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER NORM
26 * INTEGER INFO, N
27 * REAL ANORM, RCOND
28 * ..
29 * .. Array Arguments ..
30 * INTEGER IPIV( * ), IWORK( * )
31 * REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
32 * ..
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> SGTCON estimates the reciprocal of the condition number of a real
41 *> tridiagonal matrix A using the LU factorization as computed by
42 *> SGTTRF.
43 *>
44 *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
45 *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
46 *> \endverbatim
47 *
48 * Arguments:
49 * ==========
50 *
51 *> \param[in] NORM
52 *> \verbatim
53 *> NORM is CHARACTER*1
54 *> Specifies whether the 1-norm condition number or the
55 *> infinity-norm condition number is required:
56 *> = '1' or 'O': 1-norm;
57 *> = 'I': Infinity-norm.
58 *> \endverbatim
59 *>
60 *> \param[in] N
61 *> \verbatim
62 *> N is INTEGER
63 *> The order of the matrix A. N >= 0.
64 *> \endverbatim
65 *>
66 *> \param[in] DL
67 *> \verbatim
68 *> DL is REAL array, dimension (N-1)
69 *> The (n-1) multipliers that define the matrix L from the
70 *> LU factorization of A as computed by SGTTRF.
71 *> \endverbatim
72 *>
73 *> \param[in] D
74 *> \verbatim
75 *> D is REAL array, dimension (N)
76 *> The n diagonal elements of the upper triangular matrix U from
77 *> the LU factorization of A.
78 *> \endverbatim
79 *>
80 *> \param[in] DU
81 *> \verbatim
82 *> DU is REAL array, dimension (N-1)
83 *> The (n-1) elements of the first superdiagonal of U.
84 *> \endverbatim
85 *>
86 *> \param[in] DU2
87 *> \verbatim
88 *> DU2 is REAL array, dimension (N-2)
89 *> The (n-2) elements of the second superdiagonal of U.
90 *> \endverbatim
91 *>
92 *> \param[in] IPIV
93 *> \verbatim
94 *> IPIV is INTEGER array, dimension (N)
95 *> The pivot indices; for 1 <= i <= n, row i of the matrix was
96 *> interchanged with row IPIV(i). IPIV(i) will always be either
97 *> i or i+1; IPIV(i) = i indicates a row interchange was not
98 *> required.
99 *> \endverbatim
100 *>
101 *> \param[in] ANORM
102 *> \verbatim
103 *> ANORM is REAL
104 *> If NORM = '1' or 'O', the 1-norm of the original matrix A.
105 *> If NORM = 'I', the infinity-norm of the original matrix A.
106 *> \endverbatim
107 *>
108 *> \param[out] RCOND
109 *> \verbatim
110 *> RCOND is REAL
111 *> The reciprocal of the condition number of the matrix A,
112 *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
113 *> estimate of the 1-norm of inv(A) computed in this routine.
114 *> \endverbatim
115 *>
116 *> \param[out] WORK
117 *> \verbatim
118 *> WORK is REAL array, dimension (2*N)
119 *> \endverbatim
120 *>
121 *> \param[out] IWORK
122 *> \verbatim
123 *> IWORK is INTEGER array, dimension (N)
124 *> \endverbatim
125 *>
126 *> \param[out] INFO
127 *> \verbatim
128 *> INFO is INTEGER
129 *> = 0: successful exit
130 *> < 0: if INFO = -i, the i-th argument had an illegal value
131 *> \endverbatim
132 *
133 * Authors:
134 * ========
135 *
136 *> \author Univ. of Tennessee
137 *> \author Univ. of California Berkeley
138 *> \author Univ. of Colorado Denver
139 *> \author NAG Ltd.
140 *
141 *> \date September 2012
142 *
143 *> \ingroup realGTcomputational
144 *
145 * =====================================================================
146  SUBROUTINE sgtcon( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
147  $ work, iwork, info )
148 *
149 * -- LAPACK computational routine (version 3.4.2) --
150 * -- LAPACK is a software package provided by Univ. of Tennessee, --
151 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
152 * September 2012
153 *
154 * .. Scalar Arguments ..
155  CHARACTER NORM
156  INTEGER INFO, N
157  REAL ANORM, RCOND
158 * ..
159 * .. Array Arguments ..
160  INTEGER IPIV( * ), IWORK( * )
161  REAL D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
162 * ..
163 *
164 * =====================================================================
165 *
166 * .. Parameters ..
167  REAL ONE, ZERO
168  parameter ( one = 1.0e+0, zero = 0.0e+0 )
169 * ..
170 * .. Local Scalars ..
171  LOGICAL ONENRM
172  INTEGER I, KASE, KASE1
173  REAL AINVNM
174 * ..
175 * .. Local Arrays ..
176  INTEGER ISAVE( 3 )
177 * ..
178 * .. External Functions ..
179  LOGICAL LSAME
180  EXTERNAL lsame
181 * ..
182 * .. External Subroutines ..
183  EXTERNAL sgttrs, slacn2, xerbla
184 * ..
185 * .. Executable Statements ..
186 *
187 * Test the input arguments.
188 *
189  info = 0
190  onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
191  IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
192  info = -1
193  ELSE IF( n.LT.0 ) THEN
194  info = -2
195  ELSE IF( anorm.LT.zero ) THEN
196  info = -8
197  END IF
198  IF( info.NE.0 ) THEN
199  CALL xerbla( 'SGTCON', -info )
200  RETURN
201  END IF
202 *
203 * Quick return if possible
204 *
205  rcond = zero
206  IF( n.EQ.0 ) THEN
207  rcond = one
208  RETURN
209  ELSE IF( anorm.EQ.zero ) THEN
210  RETURN
211  END IF
212 *
213 * Check that D(1:N) is non-zero.
214 *
215  DO 10 i = 1, n
216  IF( d( i ).EQ.zero )
217  $ RETURN
218  10 CONTINUE
219 *
220  ainvnm = zero
221  IF( onenrm ) THEN
222  kase1 = 1
223  ELSE
224  kase1 = 2
225  END IF
226  kase = 0
227  20 CONTINUE
228  CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
229  IF( kase.NE.0 ) THEN
230  IF( kase.EQ.kase1 ) THEN
231 *
232 * Multiply by inv(U)*inv(L).
233 *
234  CALL sgttrs( 'No transpose', n, 1, dl, d, du, du2, ipiv,
235  $ work, n, info )
236  ELSE
237 *
238 * Multiply by inv(L**T)*inv(U**T).
239 *
240  CALL sgttrs( 'Transpose', n, 1, dl, d, du, du2, ipiv, work,
241  $ n, info )
242  END IF
243  GO TO 20
244  END IF
245 *
246 * Compute the estimate of the reciprocal condition number.
247 *
248  IF( ainvnm.NE.zero )
249  $ rcond = ( one / ainvnm ) / anorm
250 *
251  RETURN
252 *
253 * End of SGTCON
254 *
255  END
subroutine sgtcon(NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
SGTCON
Definition: sgtcon.f:148
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slacn2(N, V, X, ISGN, EST, KASE, ISAVE)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition: slacn2.f:138
subroutine sgttrs(TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO)
SGTTRS
Definition: sgttrs.f:140