LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cerrsyx.f
Go to the documentation of this file.
1 *> \brief \b CERRSYX
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CERRSY( PATH, NUNIT )
12 *
13 * .. Scalar Arguments ..
14 * CHARACTER*3 PATH
15 * INTEGER NUNIT
16 * ..
17 *
18 *
19 *> \par Purpose:
20 * =============
21 *>
22 *> \verbatim
23 *>
24 *> CERRSY tests the error exits for the COMPLEX routines
25 *> for symmetric indefinite matrices.
26 *>
27 *> Note that this file is used only when the XBLAS are available,
28 *> otherwise cerrsy.f defines this subroutine.
29 *> \endverbatim
30 *
31 * Arguments:
32 * ==========
33 *
34 *> \param[in] PATH
35 *> \verbatim
36 *> PATH is CHARACTER*3
37 *> The LAPACK path name for the routines to be tested.
38 *> \endverbatim
39 *>
40 *> \param[in] NUNIT
41 *> \verbatim
42 *> NUNIT is INTEGER
43 *> The unit number for output.
44 *> \endverbatim
45 *
46 * Authors:
47 * ========
48 *
49 *> \author Univ. of Tennessee
50 *> \author Univ. of California Berkeley
51 *> \author Univ. of Colorado Denver
52 *> \author NAG Ltd.
53 *
54 *> \date November 2015
55 *
56 *> \ingroup complex_lin
57 *
58 * =====================================================================
59  SUBROUTINE cerrsy( PATH, NUNIT )
60 *
61 * -- LAPACK test routine (version 3.6.0) --
62 * -- LAPACK is a software package provided by Univ. of Tennessee, --
63 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
64 * November 2015
65 *
66 * .. Scalar Arguments ..
67  CHARACTER*3 path
68  INTEGER nunit
69 * ..
70 *
71 * =====================================================================
72 *
73 * .. Parameters ..
74  INTEGER nmax
75  parameter ( nmax = 4 )
76 * ..
77 * .. Local Scalars ..
78  CHARACTER eq
79  CHARACTER*2 c2
80  INTEGER i, info, j, n_err_bnds, nparams
81  REAL anrm, rcond, berr
82 * ..
83 * .. Local Arrays ..
84  INTEGER ip( nmax )
85  REAL r( nmax ), r1( nmax ), r2( nmax ),
86  $ s( nmax ), err_bnds_n( nmax, 3 ),
87  $ err_bnds_c( nmax, 3 ), params( 1 )
88  COMPLEX a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
89  $ w( 2*nmax ), x( nmax )
90 * ..
91 * .. External Functions ..
92  LOGICAL lsamen
93  EXTERNAL lsamen
94 * ..
95 * .. External Subroutines ..
96  EXTERNAL alaesm, chkxer, cspcon, csprfs, csptrf, csptri,
100  $ csytrs_rook
101 * ..
102 * .. Scalars in Common ..
103  LOGICAL lerr, ok
104  CHARACTER*32 srnamt
105  INTEGER infot, nout
106 * ..
107 * .. Common blocks ..
108  COMMON / infoc / infot, nout, ok, lerr
109  COMMON / srnamc / srnamt
110 * ..
111 * .. Intrinsic Functions ..
112  INTRINSIC cmplx, real
113 * ..
114 * .. Executable Statements ..
115 *
116  nout = nunit
117  WRITE( nout, fmt = * )
118  c2 = path( 2: 3 )
119 *
120 * Set the variables to innocuous values.
121 *
122  DO 20 j = 1, nmax
123  DO 10 i = 1, nmax
124  a( i, j ) = cmplx( 1. / REAL( I+J ), -1. / REAL( I+J ) )
125  af( i, j ) = cmplx( 1. / REAL( I+J ), -1. / REAL( I+J ) )
126  10 CONTINUE
127  b( j ) = 0.
128  r1( j ) = 0.
129  r2( j ) = 0.
130  w( j ) = 0.
131  x( j ) = 0.
132  s( j ) = 0.
133  ip( j ) = j
134  20 CONTINUE
135  anrm = 1.0
136  ok = .true.
137 *
138 * Test error exits of the routines that use factorization
139 * of a symmetric indefinite matrix with patrial
140 * (Bunch-Kaufman) diagonal pivoting method.
141 *
142  IF( lsamen( 2, c2, 'SY' ) ) THEN
143 *
144 * CSYTRF
145 *
146  srnamt = 'CSYTRF'
147  infot = 1
148  CALL csytrf( '/', 0, a, 1, ip, w, 1, info )
149  CALL chkxer( 'CSYTRF', infot, nout, lerr, ok )
150  infot = 2
151  CALL csytrf( 'U', -1, a, 1, ip, w, 1, info )
152  CALL chkxer( 'CSYTRF', infot, nout, lerr, ok )
153  infot = 4
154  CALL csytrf( 'U', 2, a, 1, ip, w, 4, info )
155  CALL chkxer( 'CSYTRF', infot, nout, lerr, ok )
156 *
157 * CSYTF2
158 *
159  srnamt = 'CSYTF2'
160  infot = 1
161  CALL csytf2( '/', 0, a, 1, ip, info )
162  CALL chkxer( 'CSYTF2', infot, nout, lerr, ok )
163  infot = 2
164  CALL csytf2( 'U', -1, a, 1, ip, info )
165  CALL chkxer( 'CSYTF2', infot, nout, lerr, ok )
166  infot = 4
167  CALL csytf2( 'U', 2, a, 1, ip, info )
168  CALL chkxer( 'CSYTF2', infot, nout, lerr, ok )
169 *
170 * CSYTRI
171 *
172  srnamt = 'CSYTRI'
173  infot = 1
174  CALL csytri( '/', 0, a, 1, ip, w, info )
175  CALL chkxer( 'CSYTRI', infot, nout, lerr, ok )
176  infot = 2
177  CALL csytri( 'U', -1, a, 1, ip, w, info )
178  CALL chkxer( 'CSYTRI', infot, nout, lerr, ok )
179  infot = 4
180  CALL csytri( 'U', 2, a, 1, ip, w, info )
181  CALL chkxer( 'CSYTRI', infot, nout, lerr, ok )
182 *
183 * CSYTRI2
184 *
185  srnamt = 'CSYTRI2'
186  infot = 1
187  CALL csytri2( '/', 0, a, 1, ip, w, 1, info )
188  CALL chkxer( 'CSYTRI2', infot, nout, lerr, ok )
189  infot = 2
190  CALL csytri2( 'U', -1, a, 1, ip, w, 1, info )
191  CALL chkxer( 'CSYTRI2', infot, nout, lerr, ok )
192  infot = 4
193  CALL csytri2( 'U', 2, a, 1, ip, w, 1, info )
194  CALL chkxer( 'CSYTRI2', infot, nout, lerr, ok )
195 *
196 * CSYTRS
197 *
198  srnamt = 'CSYTRS'
199  infot = 1
200  CALL csytrs( '/', 0, 0, a, 1, ip, b, 1, info )
201  CALL chkxer( 'CSYTRS', infot, nout, lerr, ok )
202  infot = 2
203  CALL csytrs( 'U', -1, 0, a, 1, ip, b, 1, info )
204  CALL chkxer( 'CSYTRS', infot, nout, lerr, ok )
205  infot = 3
206  CALL csytrs( 'U', 0, -1, a, 1, ip, b, 1, info )
207  CALL chkxer( 'CSYTRS', infot, nout, lerr, ok )
208  infot = 5
209  CALL csytrs( 'U', 2, 1, a, 1, ip, b, 2, info )
210  CALL chkxer( 'CSYTRS', infot, nout, lerr, ok )
211  infot = 8
212  CALL csytrs( 'U', 2, 1, a, 2, ip, b, 1, info )
213  CALL chkxer( 'CSYTRS', infot, nout, lerr, ok )
214 *
215 * CSYRFS
216 *
217  srnamt = 'CSYRFS'
218  infot = 1
219  CALL csyrfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
220  $ r, info )
221  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
222  infot = 2
223  CALL csyrfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
224  $ w, r, info )
225  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
226  infot = 3
227  CALL csyrfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
228  $ w, r, info )
229  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
230  infot = 5
231  CALL csyrfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
232  $ r, info )
233  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
234  infot = 7
235  CALL csyrfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
236  $ r, info )
237  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
238  infot = 10
239  CALL csyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
240  $ r, info )
241  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
242  infot = 12
243  CALL csyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
244  $ r, info )
245  CALL chkxer( 'CSYRFS', infot, nout, lerr, ok )
246 *
247 * CSYRFSX
248 *
249  n_err_bnds = 3
250  nparams = 0
251  srnamt = 'CSYRFSX'
252  infot = 1
253  CALL csyrfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
254  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
255  $ params, w, r, info )
256  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
257  infot = 2
258  CALL csyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
259  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
260  $ params, w, r, info )
261  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
262  eq = 'N'
263  infot = 3
264  CALL csyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
265  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
266  $ params, w, r, info )
267  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
268  infot = 4
269  CALL csyrfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
270  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
271  $ params, w, r, info )
272  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
273  infot = 6
274  CALL csyrfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
275  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
276  $ params, w, r, info )
277  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
278  infot = 8
279  CALL csyrfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
280  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
281  $ params, w, r, info )
282  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
283  infot = 12
284  CALL csyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
285  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
286  $ params, w, r, info )
287  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
288  infot = 14
289  CALL csyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
290  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
291  $ params, w, r, info )
292  CALL chkxer( 'CSYRFSX', infot, nout, lerr, ok )
293 *
294 * CSYCON
295 *
296  srnamt = 'CSYCON'
297  infot = 1
298  CALL csycon( '/', 0, a, 1, ip, anrm, rcond, w, info )
299  CALL chkxer( 'CSYCON', infot, nout, lerr, ok )
300  infot = 2
301  CALL csycon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
302  CALL chkxer( 'CSYCON', infot, nout, lerr, ok )
303  infot = 4
304  CALL csycon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
305  CALL chkxer( 'CSYCON', infot, nout, lerr, ok )
306  infot = 6
307  CALL csycon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
308  CALL chkxer( 'CSYCON', infot, nout, lerr, ok )
309 *
310 * Test error exits of the routines that use factorization
311 * of a symmetric indefinite matrix with "rook"
312 * (bounded Bunch-Kaufman) diagonal pivoting method.
313 *
314  ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
315 *
316 * CSYTRF_ROOK
317 *
318  srnamt = 'CSYTRF_ROOK'
319  infot = 1
320  CALL csytrf_rook( '/', 0, a, 1, ip, w, 1, info )
321  CALL chkxer( 'CSYTRF_ROOK', infot, nout, lerr, ok )
322  infot = 2
323  CALL csytrf_rook( 'U', -1, a, 1, ip, w, 1, info )
324  CALL chkxer( 'CSYTRF_ROOK', infot, nout, lerr, ok )
325  infot = 4
326  CALL csytrf_rook( 'U', 2, a, 1, ip, w, 4, info )
327  CALL chkxer( 'CSYTRF_ROOK', infot, nout, lerr, ok )
328 *
329 * CSYTF2_ROOK
330 *
331  srnamt = 'CSYTF2_ROOK'
332  infot = 1
333  CALL csytf2_rook( '/', 0, a, 1, ip, info )
334  CALL chkxer( 'CSYTF2_ROOK', infot, nout, lerr, ok )
335  infot = 2
336  CALL csytf2_rook( 'U', -1, a, 1, ip, info )
337  CALL chkxer( 'CSYTF2_ROOK', infot, nout, lerr, ok )
338  infot = 4
339  CALL csytf2_rook( 'U', 2, a, 1, ip, info )
340  CALL chkxer( 'CSYTF2_ROOK', infot, nout, lerr, ok )
341 *
342 * CSYTRI_ROOK
343 *
344  srnamt = 'CSYTRI_ROOK'
345  infot = 1
346  CALL csytri_rook( '/', 0, a, 1, ip, w, info )
347  CALL chkxer( 'CSYTRI_ROOK', infot, nout, lerr, ok )
348  infot = 2
349  CALL csytri_rook( 'U', -1, a, 1, ip, w, info )
350  CALL chkxer( 'CSYTRI_ROOK', infot, nout, lerr, ok )
351  infot = 4
352  CALL csytri_rook( 'U', 2, a, 1, ip, w, info )
353  CALL chkxer( 'CSYTRI_ROOK', infot, nout, lerr, ok )
354 *
355 * CSYTRS_ROOK
356 *
357  srnamt = 'CSYTRS_ROOK'
358  infot = 1
359  CALL csytrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
360  CALL chkxer( 'CSYTRS_ROOK', infot, nout, lerr, ok )
361  infot = 2
362  CALL csytrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
363  CALL chkxer( 'CSYTRS_ROOK', infot, nout, lerr, ok )
364  infot = 3
365  CALL csytrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
366  CALL chkxer( 'CSYTRS_ROOK', infot, nout, lerr, ok )
367  infot = 5
368  CALL csytrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
369  CALL chkxer( 'CSYTRS_ROOK', infot, nout, lerr, ok )
370  infot = 8
371  CALL csytrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
372  CALL chkxer( 'CSYTRS_ROOK', infot, nout, lerr, ok )
373 *
374 * CSYCON_ROOK
375 *
376  srnamt = 'CSYCON_ROOK'
377  infot = 1
378  CALL csycon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
379  CALL chkxer( 'CSYCON_ROOK', infot, nout, lerr, ok )
380  infot = 2
381  CALL csycon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
382  CALL chkxer( 'CSYCON_ROOK', infot, nout, lerr, ok )
383  infot = 4
384  CALL csycon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
385  CALL chkxer( 'CSYCON_ROOK', infot, nout, lerr, ok )
386  infot = 6
387  CALL csycon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
388  CALL chkxer( 'CSYCON_ROOK', infot, nout, lerr, ok )
389 *
390 * Test error exits of the routines that use factorization
391 * of a symmetric indefinite packed matrix with patrial
392 * (Bunch-Kaufman) diagonal pivoting method.
393 *
394  ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
395 *
396 * CSPTRF
397 *
398  srnamt = 'CSPTRF'
399  infot = 1
400  CALL csptrf( '/', 0, a, ip, info )
401  CALL chkxer( 'CSPTRF', infot, nout, lerr, ok )
402  infot = 2
403  CALL csptrf( 'U', -1, a, ip, info )
404  CALL chkxer( 'CSPTRF', infot, nout, lerr, ok )
405 *
406 * CSPTRI
407 *
408  srnamt = 'CSPTRI'
409  infot = 1
410  CALL csptri( '/', 0, a, ip, w, info )
411  CALL chkxer( 'CSPTRI', infot, nout, lerr, ok )
412  infot = 2
413  CALL csptri( 'U', -1, a, ip, w, info )
414  CALL chkxer( 'CSPTRI', infot, nout, lerr, ok )
415 *
416 * CSPTRS
417 *
418  srnamt = 'CSPTRS'
419  infot = 1
420  CALL csptrs( '/', 0, 0, a, ip, b, 1, info )
421  CALL chkxer( 'CSPTRS', infot, nout, lerr, ok )
422  infot = 2
423  CALL csptrs( 'U', -1, 0, a, ip, b, 1, info )
424  CALL chkxer( 'CSPTRS', infot, nout, lerr, ok )
425  infot = 3
426  CALL csptrs( 'U', 0, -1, a, ip, b, 1, info )
427  CALL chkxer( 'CSPTRS', infot, nout, lerr, ok )
428  infot = 7
429  CALL csptrs( 'U', 2, 1, a, ip, b, 1, info )
430  CALL chkxer( 'CSPTRS', infot, nout, lerr, ok )
431 *
432 * CSPRFS
433 *
434  srnamt = 'CSPRFS'
435  infot = 1
436  CALL csprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
437  $ info )
438  CALL chkxer( 'CSPRFS', infot, nout, lerr, ok )
439  infot = 2
440  CALL csprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
441  $ info )
442  CALL chkxer( 'CSPRFS', infot, nout, lerr, ok )
443  infot = 3
444  CALL csprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
445  $ info )
446  CALL chkxer( 'CSPRFS', infot, nout, lerr, ok )
447  infot = 8
448  CALL csprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
449  $ info )
450  CALL chkxer( 'CSPRFS', infot, nout, lerr, ok )
451  infot = 10
452  CALL csprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
453  $ info )
454  CALL chkxer( 'CSPRFS', infot, nout, lerr, ok )
455 *
456 * CSPCON
457 *
458  srnamt = 'CSPCON'
459  infot = 1
460  CALL cspcon( '/', 0, a, ip, anrm, rcond, w, info )
461  CALL chkxer( 'CSPCON', infot, nout, lerr, ok )
462  infot = 2
463  CALL cspcon( 'U', -1, a, ip, anrm, rcond, w, info )
464  CALL chkxer( 'CSPCON', infot, nout, lerr, ok )
465  infot = 5
466  CALL cspcon( 'U', 1, a, ip, -anrm, rcond, w, info )
467  CALL chkxer( 'CSPCON', infot, nout, lerr, ok )
468  END IF
469 *
470 * Print a summary line.
471 *
472  CALL alaesm( path, ok, nout )
473 *
474  RETURN
475 *
476 * End of CERRSY
477 *
478  END
subroutine csytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CSYTRI_ROOK
Definition: csytri_rook.f:131
subroutine csyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CSYRFS
Definition: csyrfs.f:194
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine cspcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)
CSPCON
Definition: cspcon.f:120
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine csytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS
Definition: csytrs.f:122
subroutine csytri(UPLO, N, A, LDA, IPIV, WORK, INFO)
CSYTRI
Definition: csytri.f:116
subroutine csyrfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
CSYRFSX
Definition: csyrfsx.f:404
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine csptrf(UPLO, N, AP, IPIV, INFO)
CSPTRF
Definition: csptrf.f:160
subroutine csptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
CSPTRS
Definition: csptrs.f:117
subroutine csytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS_ROOK
Definition: csytrs_rook.f:138
subroutine csytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF
Definition: csytrf.f:184
subroutine csytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_ROOK
Definition: csytrf_rook.f:210
subroutine csycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON
Definition: csycon.f:127
subroutine csprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CSPRFS
Definition: csprfs.f:182
subroutine csptri(UPLO, N, AP, IPIV, WORK, INFO)
CSPTRI
Definition: csptri.f:111
subroutine csycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON_ROOK
Definition: csycon_rook.f:141
subroutine csytf2_rook(UPLO, N, A, LDA, IPIV, INFO)
CSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bun...
Definition: csytf2_rook.f:196
subroutine csytf2(UPLO, N, A, LDA, IPIV, INFO)
CSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition: csytf2.f:193
subroutine csytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRI2
Definition: csytri2.f:129