123 COMPLEX ap( * ), work( * )
130 parameter ( one = ( 1.0e+0, 0.0e+0 ),
131 $ zero = ( 0.0e+0, 0.0e+0 ) )
135 INTEGER j, k, kc, kcnext, kp, kpc, kstep, kx, npp
136 COMPLEX ak, akkp1, akp1, d, t, temp
154 upper =
lsame( uplo,
'U' )
155 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
157 ELSE IF( n.LT.0 )
THEN
161 CALL xerbla(
'CSPTRI', -info )
177 DO 10 info = n, 1, -1
178 IF( ipiv( info ).GT.0 .AND. ap( kp ).EQ.zero )
188 IF( ipiv( info ).GT.0 .AND. ap( kp ).EQ.zero )
190 kp = kp + n - info + 1
212 IF( ipiv( k ).GT.0 )
THEN
218 ap( kc+k-1 ) = one / ap( kc+k-1 )
223 CALL ccopy( k-1, ap( kc ), 1, work, 1 )
224 CALL cspmv( uplo, k-1, -one, ap, work, 1, zero, ap( kc ),
226 ap( kc+k-1 ) = ap( kc+k-1 ) -
227 $
cdotu( k-1, work, 1, ap( kc ), 1 )
237 ak = ap( kc+k-1 ) / t
238 akp1 = ap( kcnext+k ) / t
239 akkp1 = ap( kcnext+k-1 ) / t
240 d = t*( ak*akp1-one )
241 ap( kc+k-1 ) = akp1 / d
242 ap( kcnext+k ) = ak / d
243 ap( kcnext+k-1 ) = -akkp1 / d
248 CALL ccopy( k-1, ap( kc ), 1, work, 1 )
249 CALL cspmv( uplo, k-1, -one, ap, work, 1, zero, ap( kc ),
251 ap( kc+k-1 ) = ap( kc+k-1 ) -
252 $
cdotu( k-1, work, 1, ap( kc ), 1 )
253 ap( kcnext+k-1 ) = ap( kcnext+k-1 ) -
254 $
cdotu( k-1, ap( kc ), 1, ap( kcnext ),
256 CALL ccopy( k-1, ap( kcnext ), 1, work, 1 )
257 CALL cspmv( uplo, k-1, -one, ap, work, 1, zero,
259 ap( kcnext+k ) = ap( kcnext+k ) -
260 $
cdotu( k-1, work, 1, ap( kcnext ), 1 )
263 kcnext = kcnext + k + 1
266 kp = abs( ipiv( k ) )
272 kpc = ( kp-1 )*kp / 2 + 1
273 CALL cswap( kp-1, ap( kc ), 1, ap( kpc ), 1 )
275 DO 40 j = kp + 1, k - 1
278 ap( kc+j-1 ) = ap( kx )
282 ap( kc+k-1 ) = ap( kpc+kp-1 )
283 ap( kpc+kp-1 ) = temp
284 IF( kstep.EQ.2 )
THEN
285 temp = ap( kc+k+k-1 )
286 ap( kc+k+k-1 ) = ap( kc+k+kp-1 )
287 ap( kc+k+kp-1 ) = temp
313 kcnext = kc - ( n-k+2 )
314 IF( ipiv( k ).GT.0 )
THEN
320 ap( kc ) = one / ap( kc )
325 CALL ccopy( n-k, ap( kc+1 ), 1, work, 1 )
326 CALL cspmv( uplo, n-k, -one, ap( kc+n-k+1 ), work, 1,
327 $ zero, ap( kc+1 ), 1 )
328 ap( kc ) = ap( kc ) -
cdotu( n-k, work, 1, ap( kc+1 ),
339 ak = ap( kcnext ) / t
341 akkp1 = ap( kcnext+1 ) / t
342 d = t*( ak*akp1-one )
343 ap( kcnext ) = akp1 / d
345 ap( kcnext+1 ) = -akkp1 / d
350 CALL ccopy( n-k, ap( kc+1 ), 1, work, 1 )
351 CALL cspmv( uplo, n-k, -one, ap( kc+( n-k+1 ) ), work, 1,
352 $ zero, ap( kc+1 ), 1 )
353 ap( kc ) = ap( kc ) -
cdotu( n-k, work, 1, ap( kc+1 ),
355 ap( kcnext+1 ) = ap( kcnext+1 ) -
356 $
cdotu( n-k, ap( kc+1 ), 1,
357 $ ap( kcnext+2 ), 1 )
358 CALL ccopy( n-k, ap( kcnext+2 ), 1, work, 1 )
359 CALL cspmv( uplo, n-k, -one, ap( kc+( n-k+1 ) ), work, 1,
360 $ zero, ap( kcnext+2 ), 1 )
361 ap( kcnext ) = ap( kcnext ) -
362 $
cdotu( n-k, work, 1, ap( kcnext+2 ), 1 )
365 kcnext = kcnext - ( n-k+3 )
368 kp = abs( ipiv( k ) )
374 kpc = npp - ( n-kp+1 )*( n-kp+2 ) / 2 + 1
376 $
CALL cswap( n-kp, ap( kc+kp-k+1 ), 1, ap( kpc+1 ), 1 )
378 DO 70 j = k + 1, kp - 1
381 ap( kc+j-k ) = ap( kx )
387 IF( kstep.EQ.2 )
THEN
388 temp = ap( kc-n+k-1 )
389 ap( kc-n+k-1 ) = ap( kc-n+kp-1 )
390 ap( kc-n+kp-1 ) = temp
subroutine cspmv(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
CSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix ...
subroutine xerbla(SRNAME, INFO)
XERBLA
complex function cdotu(N, CX, INCX, CY, INCY)
CDOTU
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
logical function lsame(CA, CB)
LSAME