LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zerrpo ( character*3  PATH,
integer  NUNIT 
)

ZERRPO

ZERRPOX

Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011
Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrpo.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2015

Definition at line 57 of file zerrpo.f.

57 *
58 * -- LAPACK test routine (version 3.4.0) --
59 * -- LAPACK is a software package provided by Univ. of Tennessee, --
60 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
61 * November 2011
62 *
63 * .. Scalar Arguments ..
64  CHARACTER*3 path
65  INTEGER nunit
66 * ..
67 *
68 * =====================================================================
69 *
70 * .. Parameters ..
71  INTEGER nmax
72  parameter ( nmax = 4 )
73 * ..
74 * .. Local Scalars ..
75  CHARACTER*2 c2
76  INTEGER i, info, j
77  DOUBLE PRECISION anrm, rcond
78 * ..
79 * .. Local Arrays ..
80  DOUBLE PRECISION r( nmax ), r1( nmax ), r2( nmax )
81  COMPLEX*16 a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
82  $ w( 2*nmax ), x( nmax )
83 * ..
84 * .. External Functions ..
85  LOGICAL lsamen
86  EXTERNAL lsamen
87 * ..
88 * .. External Subroutines ..
89  EXTERNAL alaesm, chkxer, zpbcon, zpbequ, zpbrfs, zpbtf2,
92  $ zpptrf, zpptri, zpptrs
93 * ..
94 * .. Scalars in Common ..
95  LOGICAL lerr, ok
96  CHARACTER*32 srnamt
97  INTEGER infot, nout
98 * ..
99 * .. Common blocks ..
100  COMMON / infoc / infot, nout, ok, lerr
101  COMMON / srnamc / srnamt
102 * ..
103 * .. Intrinsic Functions ..
104  INTRINSIC dble, dcmplx
105 * ..
106 * .. Executable Statements ..
107 *
108  nout = nunit
109  WRITE( nout, fmt = * )
110  c2 = path( 2: 3 )
111 *
112 * Set the variables to innocuous values.
113 *
114  DO 20 j = 1, nmax
115  DO 10 i = 1, nmax
116  a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
117  $ -1.d0 / dble( i+j ) )
118  af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
119  $ -1.d0 / dble( i+j ) )
120  10 CONTINUE
121  b( j ) = 0.d0
122  r1( j ) = 0.d0
123  r2( j ) = 0.d0
124  w( j ) = 0.d0
125  x( j ) = 0.d0
126  20 CONTINUE
127  anrm = 1.d0
128  ok = .true.
129 *
130 * Test error exits of the routines that use the Cholesky
131 * decomposition of a Hermitian positive definite matrix.
132 *
133  IF( lsamen( 2, c2, 'PO' ) ) THEN
134 *
135 * ZPOTRF
136 *
137  srnamt = 'ZPOTRF'
138  infot = 1
139  CALL zpotrf( '/', 0, a, 1, info )
140  CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
141  infot = 2
142  CALL zpotrf( 'U', -1, a, 1, info )
143  CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
144  infot = 4
145  CALL zpotrf( 'U', 2, a, 1, info )
146  CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
147 *
148 * ZPOTF2
149 *
150  srnamt = 'ZPOTF2'
151  infot = 1
152  CALL zpotf2( '/', 0, a, 1, info )
153  CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
154  infot = 2
155  CALL zpotf2( 'U', -1, a, 1, info )
156  CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
157  infot = 4
158  CALL zpotf2( 'U', 2, a, 1, info )
159  CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
160 *
161 * ZPOTRI
162 *
163  srnamt = 'ZPOTRI'
164  infot = 1
165  CALL zpotri( '/', 0, a, 1, info )
166  CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
167  infot = 2
168  CALL zpotri( 'U', -1, a, 1, info )
169  CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
170  infot = 4
171  CALL zpotri( 'U', 2, a, 1, info )
172  CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
173 *
174 * ZPOTRS
175 *
176  srnamt = 'ZPOTRS'
177  infot = 1
178  CALL zpotrs( '/', 0, 0, a, 1, b, 1, info )
179  CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
180  infot = 2
181  CALL zpotrs( 'U', -1, 0, a, 1, b, 1, info )
182  CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
183  infot = 3
184  CALL zpotrs( 'U', 0, -1, a, 1, b, 1, info )
185  CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
186  infot = 5
187  CALL zpotrs( 'U', 2, 1, a, 1, b, 2, info )
188  CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
189  infot = 7
190  CALL zpotrs( 'U', 2, 1, a, 2, b, 1, info )
191  CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
192 *
193 * ZPORFS
194 *
195  srnamt = 'ZPORFS'
196  infot = 1
197  CALL zporfs( '/', 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
198  $ info )
199  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
200  infot = 2
201  CALL zporfs( 'U', -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
202  $ info )
203  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
204  infot = 3
205  CALL zporfs( 'U', 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
206  $ info )
207  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
208  infot = 5
209  CALL zporfs( 'U', 2, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w, r,
210  $ info )
211  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
212  infot = 7
213  CALL zporfs( 'U', 2, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w, r,
214  $ info )
215  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
216  infot = 9
217  CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 1, x, 2, r1, r2, w, r,
218  $ info )
219  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
220  infot = 11
221  CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 2, x, 1, r1, r2, w, r,
222  $ info )
223  CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
224 *
225 * ZPOCON
226 *
227  srnamt = 'ZPOCON'
228  infot = 1
229  CALL zpocon( '/', 0, a, 1, anrm, rcond, w, r, info )
230  CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
231  infot = 2
232  CALL zpocon( 'U', -1, a, 1, anrm, rcond, w, r, info )
233  CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
234  infot = 4
235  CALL zpocon( 'U', 2, a, 1, anrm, rcond, w, r, info )
236  CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
237  infot = 5
238  CALL zpocon( 'U', 1, a, 1, -anrm, rcond, w, r, info )
239  CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
240 *
241 * ZPOEQU
242 *
243  srnamt = 'ZPOEQU'
244  infot = 1
245  CALL zpoequ( -1, a, 1, r1, rcond, anrm, info )
246  CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
247  infot = 3
248  CALL zpoequ( 2, a, 1, r1, rcond, anrm, info )
249  CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
250 *
251 * Test error exits of the routines that use the Cholesky
252 * decomposition of a Hermitian positive definite packed matrix.
253 *
254  ELSE IF( lsamen( 2, c2, 'PP' ) ) THEN
255 *
256 * ZPPTRF
257 *
258  srnamt = 'ZPPTRF'
259  infot = 1
260  CALL zpptrf( '/', 0, a, info )
261  CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
262  infot = 2
263  CALL zpptrf( 'U', -1, a, info )
264  CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
265 *
266 * ZPPTRI
267 *
268  srnamt = 'ZPPTRI'
269  infot = 1
270  CALL zpptri( '/', 0, a, info )
271  CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
272  infot = 2
273  CALL zpptri( 'U', -1, a, info )
274  CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
275 *
276 * ZPPTRS
277 *
278  srnamt = 'ZPPTRS'
279  infot = 1
280  CALL zpptrs( '/', 0, 0, a, b, 1, info )
281  CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
282  infot = 2
283  CALL zpptrs( 'U', -1, 0, a, b, 1, info )
284  CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
285  infot = 3
286  CALL zpptrs( 'U', 0, -1, a, b, 1, info )
287  CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
288  infot = 6
289  CALL zpptrs( 'U', 2, 1, a, b, 1, info )
290  CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
291 *
292 * ZPPRFS
293 *
294  srnamt = 'ZPPRFS'
295  infot = 1
296  CALL zpprfs( '/', 0, 0, a, af, b, 1, x, 1, r1, r2, w, r, info )
297  CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
298  infot = 2
299  CALL zpprfs( 'U', -1, 0, a, af, b, 1, x, 1, r1, r2, w, r,
300  $ info )
301  CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
302  infot = 3
303  CALL zpprfs( 'U', 0, -1, a, af, b, 1, x, 1, r1, r2, w, r,
304  $ info )
305  CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
306  infot = 7
307  CALL zpprfs( 'U', 2, 1, a, af, b, 1, x, 2, r1, r2, w, r, info )
308  CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
309  infot = 9
310  CALL zpprfs( 'U', 2, 1, a, af, b, 2, x, 1, r1, r2, w, r, info )
311  CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
312 *
313 * ZPPCON
314 *
315  srnamt = 'ZPPCON'
316  infot = 1
317  CALL zppcon( '/', 0, a, anrm, rcond, w, r, info )
318  CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
319  infot = 2
320  CALL zppcon( 'U', -1, a, anrm, rcond, w, r, info )
321  CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
322  infot = 4
323  CALL zppcon( 'U', 1, a, -anrm, rcond, w, r, info )
324  CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
325 *
326 * ZPPEQU
327 *
328  srnamt = 'ZPPEQU'
329  infot = 1
330  CALL zppequ( '/', 0, a, r1, rcond, anrm, info )
331  CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
332  infot = 2
333  CALL zppequ( 'U', -1, a, r1, rcond, anrm, info )
334  CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
335 *
336 * Test error exits of the routines that use the Cholesky
337 * decomposition of a Hermitian positive definite band matrix.
338 *
339  ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
340 *
341 * ZPBTRF
342 *
343  srnamt = 'ZPBTRF'
344  infot = 1
345  CALL zpbtrf( '/', 0, 0, a, 1, info )
346  CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
347  infot = 2
348  CALL zpbtrf( 'U', -1, 0, a, 1, info )
349  CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
350  infot = 3
351  CALL zpbtrf( 'U', 1, -1, a, 1, info )
352  CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
353  infot = 5
354  CALL zpbtrf( 'U', 2, 1, a, 1, info )
355  CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
356 *
357 * ZPBTF2
358 *
359  srnamt = 'ZPBTF2'
360  infot = 1
361  CALL zpbtf2( '/', 0, 0, a, 1, info )
362  CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
363  infot = 2
364  CALL zpbtf2( 'U', -1, 0, a, 1, info )
365  CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
366  infot = 3
367  CALL zpbtf2( 'U', 1, -1, a, 1, info )
368  CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
369  infot = 5
370  CALL zpbtf2( 'U', 2, 1, a, 1, info )
371  CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
372 *
373 * ZPBTRS
374 *
375  srnamt = 'ZPBTRS'
376  infot = 1
377  CALL zpbtrs( '/', 0, 0, 0, a, 1, b, 1, info )
378  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
379  infot = 2
380  CALL zpbtrs( 'U', -1, 0, 0, a, 1, b, 1, info )
381  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
382  infot = 3
383  CALL zpbtrs( 'U', 1, -1, 0, a, 1, b, 1, info )
384  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
385  infot = 4
386  CALL zpbtrs( 'U', 0, 0, -1, a, 1, b, 1, info )
387  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
388  infot = 6
389  CALL zpbtrs( 'U', 2, 1, 1, a, 1, b, 1, info )
390  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
391  infot = 8
392  CALL zpbtrs( 'U', 2, 0, 1, a, 1, b, 1, info )
393  CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
394 *
395 * ZPBRFS
396 *
397  srnamt = 'ZPBRFS'
398  infot = 1
399  CALL zpbrfs( '/', 0, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
400  $ r, info )
401  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
402  infot = 2
403  CALL zpbrfs( 'U', -1, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
404  $ r, info )
405  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
406  infot = 3
407  CALL zpbrfs( 'U', 1, -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
408  $ r, info )
409  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
410  infot = 4
411  CALL zpbrfs( 'U', 0, 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
412  $ r, info )
413  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
414  infot = 6
415  CALL zpbrfs( 'U', 2, 1, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w,
416  $ r, info )
417  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
418  infot = 8
419  CALL zpbrfs( 'U', 2, 1, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w,
420  $ r, info )
421  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
422  infot = 10
423  CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 1, x, 2, r1, r2, w,
424  $ r, info )
425  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
426  infot = 12
427  CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 2, x, 1, r1, r2, w,
428  $ r, info )
429  CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
430 *
431 * ZPBCON
432 *
433  srnamt = 'ZPBCON'
434  infot = 1
435  CALL zpbcon( '/', 0, 0, a, 1, anrm, rcond, w, r, info )
436  CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
437  infot = 2
438  CALL zpbcon( 'U', -1, 0, a, 1, anrm, rcond, w, r, info )
439  CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
440  infot = 3
441  CALL zpbcon( 'U', 1, -1, a, 1, anrm, rcond, w, r, info )
442  CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
443  infot = 5
444  CALL zpbcon( 'U', 2, 1, a, 1, anrm, rcond, w, r, info )
445  CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
446  infot = 6
447  CALL zpbcon( 'U', 1, 0, a, 1, -anrm, rcond, w, r, info )
448  CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
449 *
450 * ZPBEQU
451 *
452  srnamt = 'ZPBEQU'
453  infot = 1
454  CALL zpbequ( '/', 0, 0, a, 1, r1, rcond, anrm, info )
455  CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
456  infot = 2
457  CALL zpbequ( 'U', -1, 0, a, 1, r1, rcond, anrm, info )
458  CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
459  infot = 3
460  CALL zpbequ( 'U', 1, -1, a, 1, r1, rcond, anrm, info )
461  CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
462  infot = 5
463  CALL zpbequ( 'U', 2, 1, a, 1, r1, rcond, anrm, info )
464  CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
465  END IF
466 *
467 * Print a summary line.
468 *
469  CALL alaesm( path, ok, nout )
470 *
471  RETURN
472 *
473 * End of ZERRPO
474 *
subroutine zpotrf(UPLO, N, A, LDA, INFO)
ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
Definition: zpotrf.f:102
subroutine zpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBTRS
Definition: zpbtrs.f:123
subroutine zpprfs(UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPPRFS
Definition: zpprfs.f:173
subroutine zpptrs(UPLO, N, NRHS, AP, B, LDB, INFO)
ZPPTRS
Definition: zpptrs.f:110
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine zporfs(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPORFS
Definition: zporfs.f:185
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine zpbtf2(UPLO, N, KD, AB, LDAB, INFO)
ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (un...
Definition: zpbtf2.f:144
subroutine zpbtrf(UPLO, N, KD, AB, LDAB, INFO)
ZPBTRF
Definition: zpbtrf.f:144
subroutine zppcon(UPLO, N, AP, ANORM, RCOND, WORK, RWORK, INFO)
ZPPCON
Definition: zppcon.f:120
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine zpbcon(UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK, INFO)
ZPBCON
Definition: zpbcon.f:135
subroutine zpbrfs(UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPBRFS
Definition: zpbrfs.f:191
subroutine zpbequ(UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)
ZPBEQU
Definition: zpbequ.f:132
subroutine zpoequ(N, A, LDA, S, SCOND, AMAX, INFO)
ZPOEQU
Definition: zpoequ.f:115
subroutine zppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
ZPPEQU
Definition: zppequ.f:119
subroutine zpptri(UPLO, N, AP, INFO)
ZPPTRI
Definition: zpptri.f:95
subroutine zpotri(UPLO, N, A, LDA, INFO)
ZPOTRI
Definition: zpotri.f:97
subroutine zpocon(UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
ZPOCON
Definition: zpocon.f:123
subroutine zpotf2(UPLO, N, A, LDA, INFO)
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblock...
Definition: zpotf2.f:111
subroutine zpptrf(UPLO, N, AP, INFO)
ZPPTRF
Definition: zpptrf.f:121
subroutine zpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
ZPOTRS
Definition: zpotrs.f:112

Here is the call graph for this function:

Here is the caller graph for this function: