LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zlqt03 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  C,
complex*16, dimension( lda, * )  CC,
complex*16, dimension( lda, * )  Q,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZLQT03

Purpose:
 ZLQT03 tests ZUNMLQ, which computes Q*C, Q'*C, C*Q or C*Q'.

 ZLQT03 compares the results of a call to ZUNMLQ with the results of
 forming Q explicitly by a call to ZUNGLQ and then performing matrix
 multiplication by a call to ZGEMM.
Parameters
[in]M
          M is INTEGER
          The number of rows or columns of the matrix C; C is n-by-m if
          Q is applied from the left, or m-by-n if Q is applied from
          the right.  M >= 0.
[in]N
          N is INTEGER
          The order of the orthogonal matrix Q.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  N >= K >= 0.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the LQ factorization of an m-by-n matrix, as
          returned by ZGELQF. See CGELQF for further details.
[out]C
          C is COMPLEX*16 array, dimension (LDA,N)
[out]CC
          CC is COMPLEX*16 array, dimension (LDA,N)
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the LQ factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an n-by-n orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 138 of file zlqt03.f.

138 *
139 * -- LAPACK test routine (version 3.4.0) --
140 * -- LAPACK is a software package provided by Univ. of Tennessee, --
141 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142 * November 2011
143 *
144 * .. Scalar Arguments ..
145  INTEGER k, lda, lwork, m, n
146 * ..
147 * .. Array Arguments ..
148  DOUBLE PRECISION result( * ), rwork( * )
149  COMPLEX*16 af( lda, * ), c( lda, * ), cc( lda, * ),
150  $ q( lda, * ), tau( * ), work( lwork )
151 * ..
152 *
153 * =====================================================================
154 *
155 * .. Parameters ..
156  DOUBLE PRECISION zero, one
157  parameter ( zero = 0.0d+0, one = 1.0d+0 )
158  COMPLEX*16 rogue
159  parameter ( rogue = ( -1.0d+10, -1.0d+10 ) )
160 * ..
161 * .. Local Scalars ..
162  CHARACTER side, trans
163  INTEGER info, iside, itrans, j, mc, nc
164  DOUBLE PRECISION cnorm, eps, resid
165 * ..
166 * .. External Functions ..
167  LOGICAL lsame
168  DOUBLE PRECISION dlamch, zlange
169  EXTERNAL lsame, dlamch, zlange
170 * ..
171 * .. External Subroutines ..
172  EXTERNAL zgemm, zlacpy, zlarnv, zlaset, zunglq, zunmlq
173 * ..
174 * .. Local Arrays ..
175  INTEGER iseed( 4 )
176 * ..
177 * .. Intrinsic Functions ..
178  INTRINSIC dble, dcmplx, max
179 * ..
180 * .. Scalars in Common ..
181  CHARACTER*32 srnamt
182 * ..
183 * .. Common blocks ..
184  COMMON / srnamc / srnamt
185 * ..
186 * .. Data statements ..
187  DATA iseed / 1988, 1989, 1990, 1991 /
188 * ..
189 * .. Executable Statements ..
190 *
191  eps = dlamch( 'Epsilon' )
192 *
193 * Copy the first k rows of the factorization to the array Q
194 *
195  CALL zlaset( 'Full', n, n, rogue, rogue, q, lda )
196  CALL zlacpy( 'Upper', k, n-1, af( 1, 2 ), lda, q( 1, 2 ), lda )
197 *
198 * Generate the n-by-n matrix Q
199 *
200  srnamt = 'ZUNGLQ'
201  CALL zunglq( n, n, k, q, lda, tau, work, lwork, info )
202 *
203  DO 30 iside = 1, 2
204  IF( iside.EQ.1 ) THEN
205  side = 'L'
206  mc = n
207  nc = m
208  ELSE
209  side = 'R'
210  mc = m
211  nc = n
212  END IF
213 *
214 * Generate MC by NC matrix C
215 *
216  DO 10 j = 1, nc
217  CALL zlarnv( 2, iseed, mc, c( 1, j ) )
218  10 CONTINUE
219  cnorm = zlange( '1', mc, nc, c, lda, rwork )
220  IF( cnorm.EQ.zero )
221  $ cnorm = one
222 *
223  DO 20 itrans = 1, 2
224  IF( itrans.EQ.1 ) THEN
225  trans = 'N'
226  ELSE
227  trans = 'C'
228  END IF
229 *
230 * Copy C
231 *
232  CALL zlacpy( 'Full', mc, nc, c, lda, cc, lda )
233 *
234 * Apply Q or Q' to C
235 *
236  srnamt = 'ZUNMLQ'
237  CALL zunmlq( side, trans, mc, nc, k, af, lda, tau, cc, lda,
238  $ work, lwork, info )
239 *
240 * Form explicit product and subtract
241 *
242  IF( lsame( side, 'L' ) ) THEN
243  CALL zgemm( trans, 'No transpose', mc, nc, mc,
244  $ dcmplx( -one ), q, lda, c, lda,
245  $ dcmplx( one ), cc, lda )
246  ELSE
247  CALL zgemm( 'No transpose', trans, mc, nc, nc,
248  $ dcmplx( -one ), c, lda, q, lda,
249  $ dcmplx( one ), cc, lda )
250  END IF
251 *
252 * Compute error in the difference
253 *
254  resid = zlange( '1', mc, nc, cc, lda, rwork )
255  result( ( iside-1 )*2+itrans ) = resid /
256  $ ( dble( max( 1, n ) )*cnorm*eps )
257 *
258  20 CONTINUE
259  30 CONTINUE
260 *
261  RETURN
262 *
263 * End of ZLQT03
264 *
subroutine zunglq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ZUNGLQ
Definition: zunglq.f:129
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:105
subroutine zlarnv(IDIST, ISEED, N, X)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition: zlarnv.f:101
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:189
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: zlaset.f:108
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:117
subroutine zunmlq(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMLQ
Definition: zunmlq.f:169
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: