LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
real function slatm3 ( integer  M,
integer  N,
integer  I,
integer  J,
integer  ISUB,
integer  JSUB,
integer  KL,
integer  KU,
integer  IDIST,
integer, dimension( 4 )  ISEED,
real, dimension( * )  D,
integer  IGRADE,
real, dimension( * )  DL,
real, dimension( * )  DR,
integer  IPVTNG,
integer, dimension( * )  IWORK,
real  SPARSE 
)

SLATM3

Purpose:
    SLATM3 returns the (ISUB,JSUB) entry of a random matrix of
    dimension (M, N) described by the other parameters. (ISUB,JSUB)
    is the final position of the (I,J) entry after pivoting
    according to IPVTNG and IWORK. SLATM3 is called by the
    SLATMR routine in order to build random test matrices. No error
    checking on parameters is done, because this routine is called in
    a tight loop by SLATMR which has already checked the parameters.

    Use of SLATM3 differs from SLATM2 in the order in which the random
    number generator is called to fill in random matrix entries.
    With SLATM2, the generator is called to fill in the pivoted matrix
    columnwise. With SLATM3, the generator is called to fill in the
    matrix columnwise, after which it is pivoted. Thus, SLATM3 can
    be used to construct random matrices which differ only in their
    order of rows and/or columns. SLATM2 is used to construct band
    matrices while avoiding calling the random number generator for
    entries outside the band (and therefore generating random numbers
    in different orders for different pivot orders).

    The matrix whose (ISUB,JSUB) entry is returned is constructed as
    follows (this routine only computes one entry):

      If ISUB is outside (1..M) or JSUB is outside (1..N), return zero
         (this is convenient for generating matrices in band format).

      Generate a matrix A with random entries of distribution IDIST.

      Set the diagonal to D.

      Grade the matrix, if desired, from the left (by DL) and/or
         from the right (by DR or DL) as specified by IGRADE.

      Permute, if desired, the rows and/or columns as specified by
         IPVTNG and IWORK.

      Band the matrix to have lower bandwidth KL and upper
         bandwidth KU.

      Set random entries to zero as specified by SPARSE.
Parameters
[in]M
          M is INTEGER
           Number of rows of matrix. Not modified.
[in]N
          N is INTEGER
           Number of columns of matrix. Not modified.
[in]I
          I is INTEGER
           Row of unpivoted entry to be returned. Not modified.
[in]J
          J is INTEGER
           Column of unpivoted entry to be returned. Not modified.
[in,out]ISUB
          ISUB is INTEGER
           Row of pivoted entry to be returned. Changed on exit.
[in,out]JSUB
          JSUB is INTEGER
           Column of pivoted entry to be returned. Changed on exit.
[in]KL
          KL is INTEGER
           Lower bandwidth. Not modified.
[in]KU
          KU is INTEGER
           Upper bandwidth. Not modified.
[in]IDIST
          IDIST is INTEGER
           On entry, IDIST specifies the type of distribution to be
           used to generate a random matrix .
           1 => UNIFORM( 0, 1 )
           2 => UNIFORM( -1, 1 )
           3 => NORMAL( 0, 1 )
           Not modified.
[in,out]ISEED
          ISEED is INTEGER array of dimension ( 4 )
           Seed for random number generator.
           Changed on exit.
[in]D
          D is REAL array of dimension ( MIN( I , J ) )
           Diagonal entries of matrix. Not modified.
[in]IGRADE
          IGRADE is INTEGER
           Specifies grading of matrix as follows:
           0  => no grading
           1  => matrix premultiplied by diag( DL )
           2  => matrix postmultiplied by diag( DR )
           3  => matrix premultiplied by diag( DL ) and
                         postmultiplied by diag( DR )
           4  => matrix premultiplied by diag( DL ) and
                         postmultiplied by inv( diag( DL ) )
           5  => matrix premultiplied by diag( DL ) and
                         postmultiplied by diag( DL )
           Not modified.
[in]DL
          DL is REAL array ( I or J, as appropriate )
           Left scale factors for grading matrix.  Not modified.
[in]DR
          DR is REAL array ( I or J, as appropriate )
           Right scale factors for grading matrix.  Not modified.
[in]IPVTNG
          IPVTNG is INTEGER
           On entry specifies pivoting permutations as follows:
           0 => none.
           1 => row pivoting.
           2 => column pivoting.
           3 => full pivoting, i.e., on both sides.
           Not modified.
[in]IWORK
          IWORK is INTEGER array ( I or J, as appropriate )
           This array specifies the permutation used. The
           row (or column) originally in position K is in
           position IWORK( K ) after pivoting.
           This differs from IWORK for SLATM2. Not modified.
[in]SPARSE
          SPARSE is REAL between 0. and 1.
           On entry specifies the sparsity of the matrix
           if sparse matix is to be generated.
           SPARSE should lie between 0 and 1.
           A uniform ( 0, 1 ) random number x is generated and
           compared to SPARSE; if x is larger the matrix entry
           is unchanged and if x is smaller the entry is set
           to zero. Thus on the average a fraction SPARSE of the
           entries will be set to zero.
           Not modified.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
June 2016

Definition at line 228 of file slatm3.f.

228 *
229 * -- LAPACK auxiliary routine (version 3.6.1) --
230 * -- LAPACK is a software package provided by Univ. of Tennessee, --
231 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
232 * June 2016
233 *
234 * .. Scalar Arguments ..
235 *
236  INTEGER i, idist, igrade, ipvtng, isub, j, jsub, kl,
237  $ ku, m, n
238  REAL sparse
239 * ..
240 *
241 * .. Array Arguments ..
242 *
243  INTEGER iseed( 4 ), iwork( * )
244  REAL d( * ), dl( * ), dr( * )
245 * ..
246 *
247 * =====================================================================
248 *
249 * .. Parameters ..
250 *
251  REAL zero
252  parameter ( zero = 0.0e0 )
253 * ..
254 *
255 * .. Local Scalars ..
256 *
257  REAL temp
258 * ..
259 *
260 * .. External Functions ..
261 *
262  REAL slaran, slarnd
263  EXTERNAL slaran, slarnd
264 * ..
265 *
266 *-----------------------------------------------------------------------
267 *
268 * .. Executable Statements ..
269 *
270 *
271 * Check for I and J in range
272 *
273  IF( i.LT.1 .OR. i.GT.m .OR. j.LT.1 .OR. j.GT.n ) THEN
274  isub = i
275  jsub = j
276  slatm3 = zero
277  RETURN
278  END IF
279 *
280 * Compute subscripts depending on IPVTNG
281 *
282  IF( ipvtng.EQ.0 ) THEN
283  isub = i
284  jsub = j
285  ELSE IF( ipvtng.EQ.1 ) THEN
286  isub = iwork( i )
287  jsub = j
288  ELSE IF( ipvtng.EQ.2 ) THEN
289  isub = i
290  jsub = iwork( j )
291  ELSE IF( ipvtng.EQ.3 ) THEN
292  isub = iwork( i )
293  jsub = iwork( j )
294  END IF
295 *
296 * Check for banding
297 *
298  IF( jsub.GT.isub+ku .OR. jsub.LT.isub-kl ) THEN
299  slatm3 = zero
300  RETURN
301  END IF
302 *
303 * Check for sparsity
304 *
305  IF( sparse.GT.zero ) THEN
306  IF( slaran( iseed ).LT.sparse ) THEN
307  slatm3 = zero
308  RETURN
309  END IF
310  END IF
311 *
312 * Compute entry and grade it according to IGRADE
313 *
314  IF( i.EQ.j ) THEN
315  temp = d( i )
316  ELSE
317  temp = slarnd( idist, iseed )
318  END IF
319  IF( igrade.EQ.1 ) THEN
320  temp = temp*dl( i )
321  ELSE IF( igrade.EQ.2 ) THEN
322  temp = temp*dr( j )
323  ELSE IF( igrade.EQ.3 ) THEN
324  temp = temp*dl( i )*dr( j )
325  ELSE IF( igrade.EQ.4 .AND. i.NE.j ) THEN
326  temp = temp*dl( i ) / dl( j )
327  ELSE IF( igrade.EQ.5 ) THEN
328  temp = temp*dl( i )*dl( j )
329  END IF
330  slatm3 = temp
331  RETURN
332 *
333 * End of SLATM3
334 *
real function slatm3(M, N, I, J, ISUB, JSUB, KL, KU, IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE)
SLATM3
Definition: slatm3.f:228
real function slarnd(IDIST, ISEED)
SLARND
Definition: slarnd.f:75
real function slaran(ISEED)
SLARAN
Definition: slaran.f:69

Here is the caller graph for this function: