LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
lapacke_zgesdd_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function zgesdd
30 * Author: Intel Corporation
31 * Generated November 2015
32 *****************************************************************************/
33 
34 #include "lapacke_utils.h"
35 
36 lapack_int LAPACKE_zgesdd_work( int matrix_layout, char jobz, lapack_int m,
38  lapack_int lda, double* s,
41  lapack_complex_double* work, lapack_int lwork,
42  double* rwork, lapack_int* iwork )
43 {
44  lapack_int info = 0;
45  if( matrix_layout == LAPACK_COL_MAJOR ) {
46  /* Call LAPACK function and adjust info */
47  LAPACK_zgesdd( &jobz, &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work,
48  &lwork, rwork, iwork, &info );
49  if( info < 0 ) {
50  info = info - 1;
51  }
52  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
53  lapack_int nrows_u = ( LAPACKE_lsame( jobz, 'a' ) ||
54  LAPACKE_lsame( jobz, 's' ) ||
55  ( LAPACKE_lsame( jobz, 'o' ) && m<n) ) ? m : 1;
56  lapack_int ncols_u = ( LAPACKE_lsame( jobz, 'a' ) ||
57  ( LAPACKE_lsame( jobz, 'o' ) && m<n) ) ? m :
58  ( LAPACKE_lsame( jobz, 's' ) ? MIN(m,n) : 1);
59  lapack_int nrows_vt = ( LAPACKE_lsame( jobz, 'a' ) ||
60  ( LAPACKE_lsame( jobz, 'o' ) && m>=n) ) ? n :
61  ( LAPACKE_lsame( jobz, 's' ) ? MIN(m,n) : 1);
62  lapack_int lda_t = MAX(1,m);
63  lapack_int ldu_t = MAX(1,nrows_u);
64  lapack_int ldvt_t = MAX(1,nrows_vt);
65  lapack_complex_double* a_t = NULL;
66  lapack_complex_double* u_t = NULL;
67  lapack_complex_double* vt_t = NULL;
68  /* Check leading dimension(s) */
69  if( lda < n ) {
70  info = -6;
71  LAPACKE_xerbla( "LAPACKE_zgesdd_work", info );
72  return info;
73  }
74  if( ldu < ncols_u ) {
75  info = -9;
76  LAPACKE_xerbla( "LAPACKE_zgesdd_work", info );
77  return info;
78  }
79  if( ldvt < n ) {
80  info = -11;
81  LAPACKE_xerbla( "LAPACKE_zgesdd_work", info );
82  return info;
83  }
84  /* Query optimal working array(s) size if requested */
85  if( lwork == -1 ) {
86  LAPACK_zgesdd( &jobz, &m, &n, a, &lda_t, s, u, &ldu_t, vt, &ldvt_t,
87  work, &lwork, rwork, iwork, &info );
88  return (info < 0) ? (info - 1) : info;
89  }
90  /* Allocate memory for temporary array(s) */
91  a_t = (lapack_complex_double*)
92  LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
93  if( a_t == NULL ) {
95  goto exit_level_0;
96  }
97  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
98  ( LAPACKE_lsame( jobz, 'o' ) && (m<n) ) ) {
99  u_t = (lapack_complex_double*)
101  ldu_t * MAX(1,ncols_u) );
102  if( u_t == NULL ) {
104  goto exit_level_1;
105  }
106  }
107  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
108  ( LAPACKE_lsame( jobz, 'o' ) && (m>=n) ) ) {
109  vt_t = (lapack_complex_double*)
111  ldvt_t * MAX(1,n) );
112  if( vt_t == NULL ) {
114  goto exit_level_2;
115  }
116  }
117  /* Transpose input matrices */
118  LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
119  /* Call LAPACK function and adjust info */
120  LAPACK_zgesdd( &jobz, &m, &n, a_t, &lda_t, s, u_t, &ldu_t, vt_t,
121  &ldvt_t, work, &lwork, rwork, iwork, &info );
122  if( info < 0 ) {
123  info = info - 1;
124  }
125  /* Transpose output matrices */
126  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
127  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
128  ( LAPACKE_lsame( jobz, 'o' ) && (m<n) ) ) {
129  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_u, ncols_u, u_t, ldu_t,
130  u, ldu );
131  }
132  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
133  ( LAPACKE_lsame( jobz, 'o' ) && (m>=n) ) ) {
134  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_vt, n, vt_t, ldvt_t, vt,
135  ldvt );
136  }
137  /* Release memory and exit */
138  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
139  ( LAPACKE_lsame( jobz, 'o' ) && (m>=n) ) ) {
140  LAPACKE_free( vt_t );
141  }
142 exit_level_2:
143  if( LAPACKE_lsame( jobz, 'a' ) || LAPACKE_lsame( jobz, 's' ) ||
144  ( LAPACKE_lsame( jobz, 'o' ) && (m<n) ) ) {
145  LAPACKE_free( u_t );
146  }
147 exit_level_1:
148  LAPACKE_free( a_t );
149 exit_level_0:
150  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
151  LAPACKE_xerbla( "LAPACKE_zgesdd_work", info );
152  }
153  } else {
154  info = -1;
155  LAPACKE_xerbla( "LAPACKE_zgesdd_work", info );
156  }
157  return info;
158 }
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
void LAPACK_zgesdd(char *jobz, lapack_int *m, lapack_int *n, lapack_complex_double *a, lapack_int *lda, double *s, lapack_complex_double *u, lapack_int *ldu, lapack_complex_double *vt, lapack_int *ldvt, lapack_complex_double *work, lapack_int *lwork, double *rwork, lapack_int *iwork, lapack_int *info)
#define lapack_complex_double
Definition: lapacke.h:90
lapack_int LAPACKE_zgesdd_work(int matrix_layout, char jobz, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double *s, lapack_complex_double *u, lapack_int ldu, lapack_complex_double *vt, lapack_int ldvt, lapack_complex_double *work, lapack_int lwork, double *rwork, lapack_int *iwork)
#define MIN(x, y)
Definition: lapacke_utils.h:50
#define MAX(x, y)
Definition: lapacke_utils.h:47
#define LAPACKE_free(p)
Definition: lapacke.h:113
#define LAPACKE_malloc(size)
Definition: lapacke.h:110
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:123
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)