LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
lapacke_zlascl.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native high-level C interface to LAPACK function dlaswp
30 * Author: Intel Corporation
31 * Generated June 2016
32 *****************************************************************************/
33 
34 #include "lapacke_utils.h"
35 
36 lapack_int LAPACKE_zlascl( int matrix_layout, char type, lapack_int kl,
37  lapack_int ku, double cfrom, double cto,
39  lapack_int lda )
40 {
41  if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
42  LAPACKE_xerbla( "LAPACKE_zlascl", -1 );
43  return -1;
44  }
45 #ifndef LAPACK_DISABLE_NAN_CHECK
46  /* Optionally check input matrices for NaNs */
47  switch (type) {
48  case 'G':
49  if( LAPACKE_zge_nancheck( matrix_layout, m, n, a, lda ) ) {
50  return -9;
51  }
52  break;
53  case 'L':
54  // TYPE = 'L' - lower triangle of general matrix
55  if( matrix_layout == LAPACK_COL_MAJOR &&
56  LAPACKE_zgb_nancheck( matrix_layout, m, n, m-1, 0, a, lda+1 ) ) {
57  return -9;
58  }
59  if( matrix_layout == LAPACK_ROW_MAJOR &&
60  LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, 0, m-1, a-m+1, lda+1 ) ) {
61  return -9;
62  }
63  break;
64  case 'U':
65  // TYPE = 'U' - upper triangle of general matrix
66  if( matrix_layout == LAPACK_COL_MAJOR &&
67  LAPACKE_zgb_nancheck( matrix_layout, m, n, 0, n-1, a-n+1, lda+1 ) ) {
68  return -9;
69  }
70  if( matrix_layout == LAPACK_ROW_MAJOR &&
71  LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, n-1, 0, a, lda+1 ) ) {
72  return -9;
73  }
74  break;
75  case 'H':
76  // TYPE = 'H' - part of upper Hessenberg matrix in general matrix
77  if( matrix_layout == LAPACK_COL_MAJOR &&
78  LAPACKE_zgb_nancheck( matrix_layout, m, n, 1, n-1, a-n+1, lda+1 ) ) {
79  return -9;
80  }
81  if( matrix_layout == LAPACK_ROW_MAJOR &&
82  LAPACKE_zgb_nancheck( LAPACK_COL_MAJOR, n, m, n-1, 1, a-1, lda+1 ) ) {
83  return -9;
84  }
85  case 'B':
86  // TYPE = 'B' - lower part of symmetric band matrix (assume m==n)
87  if( LAPACKE_zhb_nancheck( matrix_layout, 'L', n, kl, a, lda ) ) {
88  return -9;
89  }
90  break;
91  case 'Q':
92  // TYPE = 'Q' - upper part of symmetric band matrix (assume m==n)
93  if( LAPACKE_zhb_nancheck( matrix_layout, 'U', n, ku, a, lda ) ) {
94  return -9;
95  }
96  break;
97  case 'Z':
98  // TYPE = 'Z' - band matrix laid out for ?GBTRF
99  if( matrix_layout == LAPACK_COL_MAJOR &&
100  LAPACKE_zgb_nancheck( matrix_layout, m, n, kl, ku, a+kl, lda ) ) {
101  return -9;
102  }
103  if( matrix_layout == LAPACK_ROW_MAJOR &&
104  LAPACKE_zgb_nancheck( matrix_layout, m, n, kl, ku, a+lda*kl, lda ) ) {
105  return -9;
106  }
107  break;
108  }
109 #endif
110  return LAPACKE_zlascl_work( matrix_layout, type, kl, ku, cfrom, cto, m, n, a, lda );
111 }
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
lapack_int LAPACKE_zlascl_work(int matrix_layout, char type, lapack_int kl, lapack_int ku, double cfrom, double cto, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda)
#define lapack_complex_double
Definition: lapacke.h:90
lapack_logical LAPACKE_zhb_nancheck(int matrix_layout, char uplo, lapack_int n, lapack_int kd, const lapack_complex_double *ab, lapack_int ldab)
lapack_int LAPACKE_zlascl(int matrix_layout, char type, lapack_int kl, lapack_int ku, double cfrom, double cto, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda)
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
lapack_logical LAPACKE_zge_nancheck(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *a, lapack_int lda)
lapack_logical LAPACKE_zgb_nancheck(int matrix_layout, lapack_int m, lapack_int n, lapack_int kl, lapack_int ku, const lapack_complex_double *ab, lapack_int ldab)