139 SUBROUTINE dgeqlf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
147 INTEGER INFO, LDA, LWORK, M, N
150 DOUBLE PRECISION A( lda, * ), TAU( * ), WORK( * )
157 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
158 $ mu, nb, nbmin, nu, nx
175 lquery = ( lwork.EQ.-1 )
178 ELSE IF( n.LT.0 )
THEN
180 ELSE IF( lda.LT.max( 1, m ) )
THEN
189 nb = ilaenv( 1,
'DGEQLF',
' ', m, n, -1, -1 )
194 IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery )
THEN
200 CALL xerbla(
'DGEQLF', -info )
202 ELSE IF( lquery )
THEN
215 IF( nb.GT.1 .AND. nb.LT.k )
THEN
219 nx = max( 0, ilaenv( 3,
'DGEQLF',
' ', m, n, -1, -1 ) )
226 IF( lwork.LT.iws )
THEN
232 nbmin = max( 2, ilaenv( 2,
'DGEQLF',
' ', m, n, -1,
238 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
243 ki = ( ( k-nx-1 ) / nb )*nb
246 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
247 ib = min( k-i+1, nb )
252 CALL dgeql2( m-k+i+ib-1, ib, a( 1, n-k+i ), lda, tau( i ),
254 IF( n-k+i.GT.1 )
THEN
259 CALL dlarft(
'Backward',
'Columnwise', m-k+i+ib-1, ib,
260 $ a( 1, n-k+i ), lda, tau( i ), work, ldwork )
264 CALL dlarfb(
'Left',
'Transpose',
'Backward',
265 $
'Columnwise', m-k+i+ib-1, n-k+i-1, ib,
266 $ a( 1, n-k+i ), lda, work, ldwork, a, lda,
267 $ work( ib+1 ), ldwork )
270 mu = m - k + i + nb - 1
271 nu = n - k + i + nb - 1
279 IF( mu.GT.0 .AND. nu.GT.0 )
280 $
CALL dgeql2( mu, nu, a, lda, tau, work, iinfo )
subroutine dlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
subroutine dgeqlf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
DGEQLF
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine dgeql2(M, N, A, LDA, TAU, WORK, INFO)
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm...
subroutine dlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH