139 DOUBLE PRECISION FUNCTION zla_syrcond_c( UPLO, N, A, LDA, AF,
140 $ ldaf, ipiv, c, capply,
141 $ info, work, rwork )
151 INTEGER N, LDA, LDAF, INFO
155 COMPLEX*16 A( lda, * ), AF( ldaf, * ), WORK( * )
156 DOUBLE PRECISION C( * ), RWORK( * )
163 DOUBLE PRECISION AINVNM, ANORM, TMP
182 DOUBLE PRECISION CABS1
185 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
192 upper = lsame( uplo,
'U' )
193 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
195 ELSE IF( n.LT.0 )
THEN
197 ELSE IF( lda.LT.max( 1, n ) )
THEN
199 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
203 CALL xerbla(
'ZLA_SYRCOND_C', -info )
207 IF ( lsame( uplo,
'U' ) ) up = .true.
217 tmp = tmp + cabs1( a( j, i ) ) / c( j )
220 tmp = tmp + cabs1( a( i, j ) ) / c( j )
224 tmp = tmp + cabs1( a( j, i ) )
227 tmp = tmp + cabs1( a( i, j ) )
231 anorm = max( anorm, tmp )
238 tmp = tmp + cabs1( a( i, j ) ) / c( j )
241 tmp = tmp + cabs1( a( j, i ) ) / c( j )
245 tmp = tmp + cabs1( a( i, j ) )
248 tmp = tmp + cabs1( a( j, i ) )
252 anorm = max( anorm, tmp )
261 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
271 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
278 work( i ) = work( i ) * rwork( i )
282 CALL zsytrs(
'U', n, 1, af, ldaf, ipiv,
285 CALL zsytrs(
'L', n, 1, af, ldaf, ipiv,
293 work( i ) = work( i ) * c( i )
302 work( i ) = work( i ) * c( i )
307 CALL zsytrs(
'U', n, 1, af, ldaf, ipiv,
310 CALL zsytrs(
'L', n, 1, af, ldaf, ipiv,
317 work( i ) = work( i ) * rwork( i )
325 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(SRNAME, INFO)
XERBLA
double precision function zla_syrcond_c(UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK)
ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefin...
subroutine zlacn2(N, V, X, EST, KASE, ISAVE)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine zsytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZSYTRS