LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine sdrvsy_rook ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, real, dimension( * ) A, real, dimension( * ) AFAC, real, dimension( * ) AINV, real, dimension( * ) B, real, dimension( * ) X, real, dimension( * ) XACT, real, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

SDRVSY_ROOK

Purpose:
` SDRVSY_ROOK tests the driver routines SSYSV_ROOK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is REAL array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is REAL array, dimension (NMAX*NMAX)` [out] AINV ` AINV is REAL array, dimension (NMAX*NMAX)` [out] B ` B is REAL array, dimension (NMAX*NRHS)` [out] X ` X is REAL array, dimension (NMAX*NRHS)` [out] XACT ` XACT is REAL array, dimension (NMAX*NRHS)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(2,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2013

Definition at line 155 of file sdrvsy_rook.f.

155 *
156 * -- LAPACK test routine (version 3.5.0) --
157 * -- LAPACK is a software package provided by Univ. of Tennessee, --
158 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159 * November 2013
160 *
161 * .. Scalar Arguments ..
162  LOGICAL tsterr
163  INTEGER nmax, nn, nout, nrhs
164  REAL thresh
165 * ..
166 * .. Array Arguments ..
167  LOGICAL dotype( * )
168  INTEGER iwork( * ), nval( * )
169  REAL a( * ), afac( * ), ainv( * ), b( * ),
170  \$ rwork( * ), work( * ), x( * ), xact( * )
171 * ..
172 *
173 * =====================================================================
174 *
175 * .. Parameters ..
176  REAL one, zero
177  parameter ( one = 1.0e+0, zero = 0.0e+0 )
178  INTEGER ntypes, ntests
179  parameter ( ntypes = 10, ntests = 3 )
180  INTEGER nfact
181  parameter ( nfact = 2 )
182 * ..
183 * .. Local Scalars ..
184  LOGICAL zerot
185  CHARACTER dist, fact, TYPE, uplo, xtype
186  CHARACTER*3 path, matpath
187  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
188  \$ izero, j, k, kl, ku, lda, lwork, mode, n,
189  \$ nb, nbmin, nerrs, nfail, nimat, nrun, nt
190  REAL ainvnm, anorm, cndnum, rcondc
191 * ..
192 * .. Local Arrays ..
193  CHARACTER facts( nfact ), uplos( 2 )
194  INTEGER iseed( 4 ), iseedy( 4 )
195  REAL result( ntests )
196 * ..
197 * .. External Functions ..
198  REAL slansy
199  EXTERNAL slansy
200 * ..
201 * .. External Subroutines ..
202  EXTERNAL aladhd, alaerh, alasvm, serrvx, sget04, slacpy,
205  \$ ssytri_rook,
206  \$ xlaenv
207 * ..
208 * .. Scalars in Common ..
209  LOGICAL lerr, ok
210  CHARACTER*32 srnamt
211  INTEGER infot, nunit
212 * ..
213 * .. Common blocks ..
214  COMMON / infoc / infot, nunit, ok, lerr
215  COMMON / srnamc / srnamt
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC max, min
219 * ..
220 * .. Data statements ..
221  DATA iseedy / 1988, 1989, 1990, 1991 /
222  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
223 * ..
224 * .. Executable Statements ..
225 *
226 * Initialize constants and the random number seed.
227 *
228 * Test path
229 *
230  path( 1: 1 ) = 'Single precision'
231  path( 2: 3 ) = 'SR'
232 *
233 * Path to generate matrices
234 *
235  matpath( 1: 1 ) = 'Single precision'
236  matpath( 2: 3 ) = 'SY'
237 *
238  nrun = 0
239  nfail = 0
240  nerrs = 0
241  DO 10 i = 1, 4
242  iseed( i ) = iseedy( i )
243  10 CONTINUE
244  lwork = max( 2*nmax, nmax*nrhs )
245 *
246 * Test the error exits
247 *
248  IF( tsterr )
249  \$ CALL serrvx( path, nout )
250  infot = 0
251 *
252 * Set the block size and minimum block size for which the block
253 * routine should be used, which will be later returned by ILAENV.
254 *
255  nb = 1
256  nbmin = 2
257  CALL xlaenv( 1, nb )
258  CALL xlaenv( 2, nbmin )
259 *
260 * Do for each value of N in NVAL
261 *
262  DO 180 in = 1, nn
263  n = nval( in )
264  lda = max( n, 1 )
265  xtype = 'N'
266  nimat = ntypes
267  IF( n.LE.0 )
268  \$ nimat = 1
269 *
270  DO 170 imat = 1, nimat
271 *
272 * Do the tests only if DOTYPE( IMAT ) is true.
273 *
274  IF( .NOT.dotype( imat ) )
275  \$ GO TO 170
276 *
277 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
278 *
279  zerot = imat.GE.3 .AND. imat.LE.6
280  IF( zerot .AND. n.LT.imat-2 )
281  \$ GO TO 170
282 *
283 * Do first for UPLO = 'U', then for UPLO = 'L'
284 *
285  DO 160 iuplo = 1, 2
286  uplo = uplos( iuplo )
287 *
288 * Begin generate the test matrix A.
289 *
290 * Set up parameters with SLATB4 for the matrix generator
291 * based on the type of matrix to be generated.
292 *
293  CALL slatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
294  \$ mode, cndnum, dist )
295 *
296 * Generate a matrix with SLATMS.
297 *
298  srnamt = 'SLATMS'
299  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
300  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
301  \$ info )
302 *
303 * Check error code from SLATMS and handle error.
304 *
305  IF( info.NE.0 ) THEN
306  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
307  \$ -1, -1, imat, nfail, nerrs, nout )
308 *
309 * Skip all tests for this generated matrix
310 *
311  GO TO 160
312  END IF
313 *
314 * For types 3-6, zero one or more rows and columns of the
315 * matrix to test that INFO is returned correctly.
316 *
317  IF( zerot ) THEN
318  IF( imat.EQ.3 ) THEN
319  izero = 1
320  ELSE IF( imat.EQ.4 ) THEN
321  izero = n
322  ELSE
323  izero = n / 2 + 1
324  END IF
325 *
326  IF( imat.LT.6 ) THEN
327 *
328 * Set row and column IZERO to zero.
329 *
330  IF( iuplo.EQ.1 ) THEN
331  ioff = ( izero-1 )*lda
332  DO 20 i = 1, izero - 1
333  a( ioff+i ) = zero
334  20 CONTINUE
335  ioff = ioff + izero
336  DO 30 i = izero, n
337  a( ioff ) = zero
338  ioff = ioff + lda
339  30 CONTINUE
340  ELSE
341  ioff = izero
342  DO 40 i = 1, izero - 1
343  a( ioff ) = zero
344  ioff = ioff + lda
345  40 CONTINUE
346  ioff = ioff - izero
347  DO 50 i = izero, n
348  a( ioff+i ) = zero
349  50 CONTINUE
350  END IF
351  ELSE
352  ioff = 0
353  IF( iuplo.EQ.1 ) THEN
354 *
355 * Set the first IZERO rows and columns to zero.
356 *
357  DO 70 j = 1, n
358  i2 = min( j, izero )
359  DO 60 i = 1, i2
360  a( ioff+i ) = zero
361  60 CONTINUE
362  ioff = ioff + lda
363  70 CONTINUE
364  ELSE
365 *
366 * Set the last IZERO rows and columns to zero.
367 *
368  DO 90 j = 1, n
369  i1 = max( j, izero )
370  DO 80 i = i1, n
371  a( ioff+i ) = zero
372  80 CONTINUE
373  ioff = ioff + lda
374  90 CONTINUE
375  END IF
376  END IF
377  ELSE
378  izero = 0
379  END IF
380 *
381 * End generate the test matrix A.
382 *
383  DO 150 ifact = 1, nfact
384 *
385 * Do first for FACT = 'F', then for other values.
386 *
387  fact = facts( ifact )
388 *
389 * Compute the condition number for comparison with
390 * the value returned by DSYSVX_ROOK.
391 *
392  IF( zerot ) THEN
393  IF( ifact.EQ.1 )
394  \$ GO TO 150
395  rcondc = zero
396 *
397  ELSE IF( ifact.EQ.1 ) THEN
398 *
399 * Compute the 1-norm of A.
400 *
401  anorm = slansy( '1', uplo, n, a, lda, rwork )
402 *
403 * Factor the matrix A.
404 *
405  CALL slacpy( uplo, n, n, a, lda, afac, lda )
406  CALL ssytrf_rook( uplo, n, afac, lda, iwork, work,
407  \$ lwork, info )
408 *
409 * Compute inv(A) and take its norm.
410 *
411  CALL slacpy( uplo, n, n, afac, lda, ainv, lda )
412  lwork = (n+nb+1)*(nb+3)
413  CALL ssytri_rook( uplo, n, ainv, lda, iwork,
414  \$ work, info )
415  ainvnm = slansy( '1', uplo, n, ainv, lda, rwork )
416 *
417 * Compute the 1-norm condition number of A.
418 *
419  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
420  rcondc = one
421  ELSE
422  rcondc = ( one / anorm ) / ainvnm
423  END IF
424  END IF
425 *
426 * Form an exact solution and set the right hand side.
427 *
428  srnamt = 'SLARHS'
429  CALL slarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
430  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
431  \$ info )
432  xtype = 'C'
433 *
434 * --- Test SSYSV_ROOK ---
435 *
436  IF( ifact.EQ.2 ) THEN
437  CALL slacpy( uplo, n, n, a, lda, afac, lda )
438  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
439 *
440 * Factor the matrix and solve the system using
441 * SSYSV_ROOK.
442 *
443  srnamt = 'SSYSV_ROOK'
444  CALL ssysv_rook( uplo, n, nrhs, afac, lda, iwork,
445  \$ x, lda, work, lwork, info )
446 *
447 * Adjust the expected value of INFO to account for
448 * pivoting.
449 *
450  k = izero
451  IF( k.GT.0 ) THEN
452  100 CONTINUE
453  IF( iwork( k ).LT.0 ) THEN
454  IF( iwork( k ).NE.-k ) THEN
455  k = -iwork( k )
456  GO TO 100
457  END IF
458  ELSE IF( iwork( k ).NE.k ) THEN
459  k = iwork( k )
460  GO TO 100
461  END IF
462  END IF
463 *
464 * Check error code from SSYSV_ROOK and handle error.
465 *
466  IF( info.NE.k ) THEN
467  CALL alaerh( path, 'SSYSV_ROOK', info, k, uplo,
468  \$ n, n, -1, -1, nrhs, imat, nfail,
469  \$ nerrs, nout )
470  GO TO 120
471  ELSE IF( info.NE.0 ) THEN
472  GO TO 120
473  END IF
474 *
475 *+ TEST 1 Reconstruct matrix from factors and compute
476 * residual.
477 *
478  CALL ssyt01_rook( uplo, n, a, lda, afac, lda,
479  \$ iwork, ainv, lda, rwork,
480  \$ result( 1 ) )
481 *
482 *+ TEST 2 Compute residual of the computed solution.
483 *
484  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
485  CALL spot02( uplo, n, nrhs, a, lda, x, lda, work,
486  \$ lda, rwork, result( 2 ) )
487 *
488 *+ TEST 3
489 * Check solution from generated exact solution.
490 *
491  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
492  \$ result( 3 ) )
493  nt = 3
494 *
495 * Print information about the tests that did not pass
496 * the threshold.
497 *
498  DO 110 k = 1, nt
499  IF( result( k ).GE.thresh ) THEN
500  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
501  \$ CALL aladhd( nout, path )
502  WRITE( nout, fmt = 9999 )'SSYSV_ROOK', uplo,
503  \$ n, imat, k, result( k )
504  nfail = nfail + 1
505  END IF
506  110 CONTINUE
507  nrun = nrun + nt
508  120 CONTINUE
509  END IF
510 *
511  150 CONTINUE
512 *
513  160 CONTINUE
514  170 CONTINUE
515  180 CONTINUE
516 *
517 * Print a summary of the results.
518 *
519  CALL alasvm( path, nout, nfail, nrun, nerrs )
520 *
521  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
522  \$ ', test ', i2, ', ratio =', g12.5 )
523  RETURN
524 *
525 * End of SDRVSY_ROOK
526 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:122
subroutine ssytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
SSYTRF_ROOK
Definition: ssytrf_rook.f:210
subroutine ssyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
SSYT01_ROOK
Definition: ssyt01_rook.f:126
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:206
subroutine spot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPOT05
Definition: spot05.f:166
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine ssytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
SSYTRI_ROOK
Definition: ssytri_rook.f:131
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:104
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:57
subroutine ssysv_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
SSYSV_ROOK computes the solution to system of linear equations A * X = B for SY matrices ...
Definition: ssysv_rook.f:206
subroutine spot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SPOT02
Definition: spot02.f:129
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: slansy.f:124

Here is the call graph for this function:

Here is the caller graph for this function: