LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine ssytrf_rook ( character  UPLO,
integer  N,
real, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
real, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

SSYTRF_ROOK

Download SSYTRF_ROOK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYTRF_ROOK computes the factorization of a real symmetric matrix A
 using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
 The form of the factorization is

    A = U*D*U**T  or  A = L*D*L**T

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and D is symmetric and block diagonal with
 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L (see below for further details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.

          If UPLO = 'U':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.

               If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
               columns k and -IPIV(k) were interchanged and rows and
               columns k-1 and -IPIV(k-1) were inerchaged,
               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.

               If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
               columns k and -IPIV(k) were interchanged and rows and
               columns k+1 and -IPIV(k+1) were inerchaged,
               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK)).
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK >=1.  For best performance
          LWORK >= N*NB, where NB is the block size returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, and division by zero will occur if it
                is used to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
June 2016
Further Details:
  If UPLO = 'U', then A = U*D*U**T, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    v    0   )   k-s
     U(k) =  (   0    I    0   )   s
             (   0    0    I   )   n-k
                k-s   s   n-k

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  and A(k,k), and v overwrites A(1:k-2,k-1:k).

  If UPLO = 'L', then A = L*D*L**T, where
     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    0     0   )  k-1
     L(k) =  (   0    I     0   )  s
             (   0    v     I   )  n-k-s+1
                k-1   s  n-k-s+1

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
Contributors:
   June 2016, Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 210 of file ssytrf_rook.f.

210 *
211 * -- LAPACK computational routine (version 3.6.1) --
212 * -- LAPACK is a software package provided by Univ. of Tennessee, --
213 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
214 * June 2016
215 *
216 * .. Scalar Arguments ..
217  CHARACTER uplo
218  INTEGER info, lda, lwork, n
219 * ..
220 * .. Array Arguments ..
221  INTEGER ipiv( * )
222  REAL a( lda, * ), work( * )
223 * ..
224 *
225 * =====================================================================
226 *
227 * .. Local Scalars ..
228  LOGICAL lquery, upper
229  INTEGER iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin
230 * ..
231 * .. External Functions ..
232  LOGICAL lsame
233  INTEGER ilaenv
234  EXTERNAL lsame, ilaenv
235 * ..
236 * .. External Subroutines ..
237  EXTERNAL slasyf_rook, ssytf2_rook, xerbla
238 * ..
239 * .. Intrinsic Functions ..
240  INTRINSIC max
241 * ..
242 * .. Executable Statements ..
243 *
244 * Test the input parameters.
245 *
246  info = 0
247  upper = lsame( uplo, 'U' )
248  lquery = ( lwork.EQ.-1 )
249  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
250  info = -1
251  ELSE IF( n.LT.0 ) THEN
252  info = -2
253  ELSE IF( lda.LT.max( 1, n ) ) THEN
254  info = -4
255  ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
256  info = -7
257  END IF
258 *
259  IF( info.EQ.0 ) THEN
260 *
261 * Determine the block size
262 *
263  nb = ilaenv( 1, 'SSYTRF_ROOK', uplo, n, -1, -1, -1 )
264  lwkopt = max( 1, n*nb )
265  work( 1 ) = lwkopt
266  END IF
267 *
268  IF( info.NE.0 ) THEN
269  CALL xerbla( 'SSYTRF_ROOK', -info )
270  RETURN
271  ELSE IF( lquery ) THEN
272  RETURN
273  END IF
274 *
275  nbmin = 2
276  ldwork = n
277  IF( nb.GT.1 .AND. nb.LT.n ) THEN
278  iws = ldwork*nb
279  IF( lwork.LT.iws ) THEN
280  nb = max( lwork / ldwork, 1 )
281  nbmin = max( 2, ilaenv( 2, 'SSYTRF_ROOK',
282  $ uplo, n, -1, -1, -1 ) )
283  END IF
284  ELSE
285  iws = 1
286  END IF
287  IF( nb.LT.nbmin )
288  $ nb = n
289 *
290  IF( upper ) THEN
291 *
292 * Factorize A as U*D*U**T using the upper triangle of A
293 *
294 * K is the main loop index, decreasing from N to 1 in steps of
295 * KB, where KB is the number of columns factorized by SLASYF_ROOK;
296 * KB is either NB or NB-1, or K for the last block
297 *
298  k = n
299  10 CONTINUE
300 *
301 * If K < 1, exit from loop
302 *
303  IF( k.LT.1 )
304  $ GO TO 40
305 *
306  IF( k.GT.nb ) THEN
307 *
308 * Factorize columns k-kb+1:k of A and use blocked code to
309 * update columns 1:k-kb
310 *
311  CALL slasyf_rook( uplo, k, nb, kb, a, lda,
312  $ ipiv, work, ldwork, iinfo )
313  ELSE
314 *
315 * Use unblocked code to factorize columns 1:k of A
316 *
317  CALL ssytf2_rook( uplo, k, a, lda, ipiv, iinfo )
318  kb = k
319  END IF
320 *
321 * Set INFO on the first occurrence of a zero pivot
322 *
323  IF( info.EQ.0 .AND. iinfo.GT.0 )
324  $ info = iinfo
325 *
326 * No need to adjust IPIV
327 *
328 * Decrease K and return to the start of the main loop
329 *
330  k = k - kb
331  GO TO 10
332 *
333  ELSE
334 *
335 * Factorize A as L*D*L**T using the lower triangle of A
336 *
337 * K is the main loop index, increasing from 1 to N in steps of
338 * KB, where KB is the number of columns factorized by SLASYF_ROOK;
339 * KB is either NB or NB-1, or N-K+1 for the last block
340 *
341  k = 1
342  20 CONTINUE
343 *
344 * If K > N, exit from loop
345 *
346  IF( k.GT.n )
347  $ GO TO 40
348 *
349  IF( k.LE.n-nb ) THEN
350 *
351 * Factorize columns k:k+kb-1 of A and use blocked code to
352 * update columns k+kb:n
353 *
354  CALL slasyf_rook( uplo, n-k+1, nb, kb, a( k, k ), lda,
355  $ ipiv( k ), work, ldwork, iinfo )
356  ELSE
357 *
358 * Use unblocked code to factorize columns k:n of A
359 *
360  CALL ssytf2_rook( uplo, n-k+1, a( k, k ), lda, ipiv( k ),
361  $ iinfo )
362  kb = n - k + 1
363  END IF
364 *
365 * Set INFO on the first occurrence of a zero pivot
366 *
367  IF( info.EQ.0 .AND. iinfo.GT.0 )
368  $ info = iinfo + k - 1
369 *
370 * Adjust IPIV
371 *
372  DO 30 j = k, k + kb - 1
373  IF( ipiv( j ).GT.0 ) THEN
374  ipiv( j ) = ipiv( j ) + k - 1
375  ELSE
376  ipiv( j ) = ipiv( j ) - k + 1
377  END IF
378  30 CONTINUE
379 *
380 * Increase K and return to the start of the main loop
381 *
382  k = k + kb
383  GO TO 20
384 *
385  END IF
386 *
387  40 CONTINUE
388  work( 1 ) = lwkopt
389  RETURN
390 *
391 * End of SSYTRF_ROOK
392 *
subroutine ssytf2_rook(UPLO, N, A, LDA, IPIV, INFO)
SSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-...
Definition: ssytf2_rook.f:196
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slasyf_rook(UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO)
SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch-Kaufm...
Definition: slasyf_rook.f:186
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: