LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine derrps ( character*3  PATH,
integer  NUNIT 
)

DERRPS

Purpose:
 DERRPS tests the error exits for the DOUBLE PRECISION routines
 for DPSTRF.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 57 of file derrps.f.

57 *
58 * -- LAPACK test routine (version 3.4.0) --
59 * -- LAPACK is a software package provided by Univ. of Tennessee, --
60 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
61 * November 2011
62 *
63 * .. Scalar Arguments ..
64  INTEGER nunit
65  CHARACTER*3 path
66 * ..
67 *
68 * =====================================================================
69 *
70 * .. Parameters ..
71  INTEGER nmax
72  parameter ( nmax = 4 )
73 * ..
74 * .. Local Scalars ..
75  INTEGER i, info, j, rank
76 * ..
77 * .. Local Arrays ..
78  DOUBLE PRECISION a( nmax, nmax ), work( 2*nmax )
79  INTEGER piv( nmax )
80 * ..
81 * .. External Subroutines ..
82  EXTERNAL alaesm, chkxer, dpstf2, dpstrf
83 * ..
84 * .. Scalars in Common ..
85  INTEGER infot, nout
86  LOGICAL lerr, ok
87  CHARACTER*32 srnamt
88 * ..
89 * .. Common blocks ..
90  COMMON / infoc / infot, nout, ok, lerr
91  COMMON / srnamc / srnamt
92 * ..
93 * .. Intrinsic Functions ..
94  INTRINSIC dble
95 * ..
96 * .. Executable Statements ..
97 *
98  nout = nunit
99  WRITE( nout, fmt = * )
100 *
101 * Set the variables to innocuous values.
102 *
103  DO 110 j = 1, nmax
104  DO 100 i = 1, nmax
105  a( i, j ) = 1.d0 / dble( i+j )
106 *
107  100 CONTINUE
108  piv( j ) = j
109  work( j ) = 0.d0
110  work( nmax+j ) = 0.d0
111 *
112  110 CONTINUE
113  ok = .true.
114 *
115 *
116 * Test error exits of the routines that use the Cholesky
117 * decomposition of a symmetric positive semidefinite matrix.
118 *
119 * DPSTRF
120 *
121  srnamt = 'DPSTRF'
122  infot = 1
123  CALL dpstrf( '/', 0, a, 1, piv, rank, -1.d0, work, info )
124  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
125  infot = 2
126  CALL dpstrf( 'U', -1, a, 1, piv, rank, -1.d0, work, info )
127  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
128  infot = 4
129  CALL dpstrf( 'U', 2, a, 1, piv, rank, -1.d0, work, info )
130  CALL chkxer( 'DPSTRF', infot, nout, lerr, ok )
131 *
132 * DPSTF2
133 *
134  srnamt = 'DPSTF2'
135  infot = 1
136  CALL dpstf2( '/', 0, a, 1, piv, rank, -1.d0, work, info )
137  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
138  infot = 2
139  CALL dpstf2( 'U', -1, a, 1, piv, rank, -1.d0, work, info )
140  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
141  infot = 4
142  CALL dpstf2( 'U', 2, a, 1, piv, rank, -1.d0, work, info )
143  CALL chkxer( 'DPSTF2', infot, nout, lerr, ok )
144 *
145 *
146 * Print a summary line.
147 *
148  CALL alaesm( path, ok, nout )
149 *
150  RETURN
151 *
152 * End of DERRPS
153 *
subroutine dpstf2(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
Definition: dpstf2.f:143
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine dpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
Definition: dpstrf.f:144

Here is the call graph for this function:

Here is the caller graph for this function: