72 parameter ( nmax = 4 )
75 INTEGER i, info, j, rank
78 DOUBLE PRECISION a( nmax, nmax ), work( 2*nmax )
90 COMMON / infoc / infot, nout, ok, lerr
91 COMMON / srnamc / srnamt
99 WRITE( nout, fmt = * )
105 a( i, j ) = 1.d0 / dble( i+j )
110 work( nmax+j ) = 0.d0
123 CALL dpstrf(
'/', 0, a, 1, piv, rank, -1.d0, work, info )
124 CALL chkxer(
'DPSTRF', infot, nout, lerr, ok )
126 CALL dpstrf(
'U', -1, a, 1, piv, rank, -1.d0, work, info )
127 CALL chkxer(
'DPSTRF', infot, nout, lerr, ok )
129 CALL dpstrf(
'U', 2, a, 1, piv, rank, -1.d0, work, info )
130 CALL chkxer(
'DPSTRF', infot, nout, lerr, ok )
136 CALL dpstf2(
'/', 0, a, 1, piv, rank, -1.d0, work, info )
137 CALL chkxer(
'DPSTF2', infot, nout, lerr, ok )
139 CALL dpstf2(
'U', -1, a, 1, piv, rank, -1.d0, work, info )
140 CALL chkxer(
'DPSTF2', infot, nout, lerr, ok )
142 CALL dpstf2(
'U', 2, a, 1, piv, rank, -1.d0, work, info )
143 CALL chkxer(
'DPSTF2', infot, nout, lerr, ok )
148 CALL alaesm( path, ok, nout )
subroutine dpstf2(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTF2 computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...
subroutine alaesm(PATH, OK, NOUT)
ALAESM
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
subroutine dpstrf(UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
DPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semide...