190 SUBROUTINE zgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
198 INTEGER INFO, LDA, M, N
201 DOUBLE PRECISION D( * ), E( * )
202 COMPLEX*16 A( lda, * ), TAUP( * ), TAUQ( * ), WORK( * )
209 parameter ( zero = ( 0.0d+0, 0.0d+0 ),
210 $ one = ( 1.0d+0, 0.0d+0 ) )
220 INTRINSIC dconjg, max, min
229 ELSE IF( n.LT.0 )
THEN
231 ELSE IF( lda.LT.max( 1, m ) )
THEN
235 CALL xerbla(
'ZGEBD2', -info )
248 CALL zlarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
256 $
CALL zlarf(
'Left', m-i+1, n-i, a( i, i ), 1,
257 $ dconjg( tauq( i ) ), a( i, i+1 ), lda, work )
265 CALL zlacgv( n-i, a( i, i+1 ), lda )
267 CALL zlarfg( n-i, alpha, a( i, min( i+2, n ) ), lda,
274 CALL zlarf(
'Right', m-i, n-i, a( i, i+1 ), lda,
275 $ taup( i ), a( i+1, i+1 ), lda, work )
276 CALL zlacgv( n-i, a( i, i+1 ), lda )
290 CALL zlacgv( n-i+1, a( i, i ), lda )
292 CALL zlarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
300 $
CALL zlarf(
'Right', m-i, n-i+1, a( i, i ), lda,
301 $ taup( i ), a( i+1, i ), lda, work )
302 CALL zlacgv( n-i+1, a( i, i ), lda )
311 CALL zlarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
318 CALL zlarf(
'Left', m-i, n-i, a( i+1, i ), 1,
319 $ dconjg( tauq( i ) ), a( i+1, i+1 ), lda,
subroutine zlarfg(N, ALPHA, X, INCX, TAU)
ZLARFG generates an elementary reflector (Householder matrix).
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine zgebd2(M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO)
ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine zlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
ZLARF applies an elementary reflector to a general rectangular matrix.
subroutine zlacgv(N, X, INCX)
ZLACGV conjugates a complex vector.