LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
sorm22.f
Go to the documentation of this file.
1 *> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SORM22 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
22 * $ WORK, LWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER SIDE, TRANS
26 * INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
27 * ..
28 * .. Array Arguments ..
29 * REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
30 * ..
31 *
32 *> \par Purpose
33 * ============
34 *>
35 *> \verbatim
36 *>
37 *>
38 *> SORM22 overwrites the general real M-by-N matrix C with
39 *>
40 *> SIDE = 'L' SIDE = 'R'
41 *> TRANS = 'N': Q * C C * Q
42 *> TRANS = 'T': Q**T * C C * Q**T
43 *>
44 *> where Q is a real orthogonal matrix of order NQ, with NQ = M if
45 *> SIDE = 'L' and NQ = N if SIDE = 'R'.
46 *> The orthogonal matrix Q processes a 2-by-2 block structure
47 *>
48 *> [ Q11 Q12 ]
49 *> Q = [ ]
50 *> [ Q21 Q22 ],
51 *>
52 *> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
53 *> N2-by-N2 upper triangular matrix.
54 *> \endverbatim
55 *
56 * Arguments
57 * =========
58 *
59 *> \param[in] SIDE
60 *> \verbatim
61 *> SIDE is CHARACTER*1
62 *> = 'L': apply Q or Q**T from the Left;
63 *> = 'R': apply Q or Q**T from the Right.
64 *> \endverbatim
65 *>
66 *> \param[in] TRANS
67 *> \verbatim
68 *> TRANS is CHARACTER*1
69 *> = 'N': apply Q (No transpose);
70 *> = 'C': apply Q**T (Conjugate transpose).
71 *> \endverbatim
72 *>
73 *> \param[in] M
74 *> \verbatim
75 *> M is INTEGER
76 *> The number of rows of the matrix C. M >= 0.
77 *> \endverbatim
78 *>
79 *> \param[in] N
80 *> \verbatim
81 *> N is INTEGER
82 *> The number of columns of the matrix C. N >= 0.
83 *> \endverbatim
84 *>
85 *> \param[in] N1
86 *> \param[in] N2
87 *> \verbatim
88 *> N1 is INTEGER
89 *> N2 is INTEGER
90 *> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
91 *> The following requirement must be satisfied:
92 *> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
93 *> \endverbatim
94 *>
95 *> \param[in] Q
96 *> \verbatim
97 *> Q is REAL array, dimension
98 *> (LDQ,M) if SIDE = 'L'
99 *> (LDQ,N) if SIDE = 'R'
100 *> \endverbatim
101 *>
102 *> \param[in] LDQ
103 *> \verbatim
104 *> LDQ is INTEGER
105 *> The leading dimension of the array Q.
106 *> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
107 *> \endverbatim
108 *>
109 *> \param[in,out] C
110 *> \verbatim
111 *> C is REAL array, dimension (LDC,N)
112 *> On entry, the M-by-N matrix C.
113 *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
114 *> \endverbatim
115 *>
116 *> \param[in] LDC
117 *> \verbatim
118 *> LDC is INTEGER
119 *> The leading dimension of the array C. LDC >= max(1,M).
120 *> \endverbatim
121 *>
122 *> \param[out] WORK
123 *> \verbatim
124 *> WORK is REAL array, dimension (MAX(1,LWORK))
125 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
126 *> \endverbatim
127 *>
128 *> \param[in] LWORK
129 *> \verbatim
130 *> LWORK is INTEGER
131 *> The dimension of the array WORK.
132 *> If SIDE = 'L', LWORK >= max(1,N);
133 *> if SIDE = 'R', LWORK >= max(1,M).
134 *> For optimum performance LWORK >= M*N.
135 *>
136 *> If LWORK = -1, then a workspace query is assumed; the routine
137 *> only calculates the optimal size of the WORK array, returns
138 *> this value as the first entry of the WORK array, and no error
139 *> message related to LWORK is issued by XERBLA.
140 *> \endverbatim
141 *>
142 *> \param[out] INFO
143 *> \verbatim
144 *> INFO is INTEGER
145 *> = 0: successful exit
146 *> < 0: if INFO = -i, the i-th argument had an illegal value
147 *> \endverbatim
148 *
149 *
150 * Authors:
151 * ========
152 *
153 *> \author Univ. of Tennessee
154 *> \author Univ. of California Berkeley
155 *> \author Univ. of Colorado Denver
156 *> \author NAG Ltd.
157 *
158 *> \date January 2015
159 *
160 *> \ingroup complexOTHERcomputational
161 *
162 * =====================================================================
163  SUBROUTINE sorm22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
164  $ work, lwork, info )
165 *
166 * -- LAPACK computational routine (version 3.6.0) --
167 * -- LAPACK is a software package provided by Univ. of Tennessee, --
168 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169 * January 2015
170 *
171  IMPLICIT NONE
172 *
173 * .. Scalar Arguments ..
174  CHARACTER SIDE, TRANS
175  INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
176 * ..
177 * .. Array Arguments ..
178  REAL Q( ldq, * ), C( ldc, * ), WORK( * )
179 * ..
180 *
181 * =====================================================================
182 *
183 * .. Parameters ..
184  REAL ONE
185  parameter ( one = 1.0e+0 )
186 *
187 * .. Local Scalars ..
188  LOGICAL LEFT, LQUERY, NOTRAN
189  INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
190 * ..
191 * .. External Functions ..
192  LOGICAL LSAME
193  EXTERNAL lsame
194 * ..
195 * .. External Subroutines ..
196  EXTERNAL sgemm, slacpy, strmm, xerbla
197 * ..
198 * .. Intrinsic Functions ..
199  INTRINSIC REAL, MAX, MIN
200 * ..
201 * .. Executable Statements ..
202 *
203 * Test the input arguments
204 *
205  info = 0
206  left = lsame( side, 'L' )
207  notran = lsame( trans, 'N' )
208  lquery = ( lwork.EQ.-1 )
209 *
210 * NQ is the order of Q;
211 * NW is the minimum dimension of WORK.
212 *
213  IF( left ) THEN
214  nq = m
215  ELSE
216  nq = n
217  END IF
218  nw = nq
219  IF( n1.EQ.0 .OR. n2.EQ.0 ) nw = 1
220  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
221  info = -1
222  ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.lsame( trans, 'T' ) )
223  $ THEN
224  info = -2
225  ELSE IF( m.LT.0 ) THEN
226  info = -3
227  ELSE IF( n.LT.0 ) THEN
228  info = -4
229  ELSE IF( n1.LT.0 .OR. n1+n2.NE.nq ) THEN
230  info = -5
231  ELSE IF( n2.LT.0 ) THEN
232  info = -6
233  ELSE IF( ldq.LT.max( 1, nq ) ) THEN
234  info = -8
235  ELSE IF( ldc.LT.max( 1, m ) ) THEN
236  info = -10
237  ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
238  info = -12
239  END IF
240 *
241  IF( info.EQ.0 ) THEN
242  lwkopt = m*n
243  work( 1 ) = REAL( lwkopt )
244  END IF
245 *
246  IF( info.NE.0 ) THEN
247  CALL xerbla( 'SORM22', -info )
248  RETURN
249  ELSE IF( lquery ) THEN
250  RETURN
251  END IF
252 *
253 * Quick return if possible
254 *
255  IF( m.EQ.0 .OR. n.EQ.0 ) THEN
256  work( 1 ) = 1
257  RETURN
258  END IF
259 *
260 * Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
261 *
262  IF( n1.EQ.0 ) THEN
263  CALL strmm( side, 'Upper', trans, 'Non-Unit', m, n, one,
264  $ q, ldq, c, ldc )
265  work( 1 ) = one
266  RETURN
267  ELSE IF( n2.EQ.0 ) THEN
268  CALL strmm( side, 'Lower', trans, 'Non-Unit', m, n, one,
269  $ q, ldq, c, ldc )
270  work( 1 ) = one
271  RETURN
272  END IF
273 *
274 * Compute the largest chunk size available from the workspace.
275 *
276  nb = max( 1, min( lwork, lwkopt ) / nq )
277 *
278  IF( left ) THEN
279  IF( notran ) THEN
280  DO i = 1, n, nb
281  len = min( nb, n-i+1 )
282  ldwork = m
283 *
284 * Multiply bottom part of C by Q12.
285 *
286  CALL slacpy( 'All', n1, len, c( n2+1, i ), ldc, work,
287  $ ldwork )
288  CALL strmm( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
289  $ n1, len, one, q( 1, n2+1 ), ldq, work,
290  $ ldwork )
291 *
292 * Multiply top part of C by Q11.
293 *
294  CALL sgemm( 'No Transpose', 'No Transpose', n1, len, n2,
295  $ one, q, ldq, c( 1, i ), ldc, one, work,
296  $ ldwork )
297 *
298 * Multiply top part of C by Q21.
299 *
300  CALL slacpy( 'All', n2, len, c( 1, i ), ldc,
301  $ work( n1+1 ), ldwork )
302  CALL strmm( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
303  $ n2, len, one, q( n1+1, 1 ), ldq,
304  $ work( n1+1 ), ldwork )
305 *
306 * Multiply bottom part of C by Q22.
307 *
308  CALL sgemm( 'No Transpose', 'No Transpose', n2, len, n1,
309  $ one, q( n1+1, n2+1 ), ldq, c( n2+1, i ), ldc,
310  $ one, work( n1+1 ), ldwork )
311 *
312 * Copy everything back.
313 *
314  CALL slacpy( 'All', m, len, work, ldwork, c( 1, i ),
315  $ ldc )
316  END DO
317  ELSE
318  DO i = 1, n, nb
319  len = min( nb, n-i+1 )
320  ldwork = m
321 *
322 * Multiply bottom part of C by Q21**T.
323 *
324  CALL slacpy( 'All', n2, len, c( n1+1, i ), ldc, work,
325  $ ldwork )
326  CALL strmm( 'Left', 'Upper', 'Transpose', 'Non-Unit',
327  $ n2, len, one, q( n1+1, 1 ), ldq, work,
328  $ ldwork )
329 *
330 * Multiply top part of C by Q11**T.
331 *
332  CALL sgemm( 'Transpose', 'No Transpose', n2, len, n1,
333  $ one, q, ldq, c( 1, i ), ldc, one, work,
334  $ ldwork )
335 *
336 * Multiply top part of C by Q12**T.
337 *
338  CALL slacpy( 'All', n1, len, c( 1, i ), ldc,
339  $ work( n2+1 ), ldwork )
340  CALL strmm( 'Left', 'Lower', 'Transpose', 'Non-Unit',
341  $ n1, len, one, q( 1, n2+1 ), ldq,
342  $ work( n2+1 ), ldwork )
343 *
344 * Multiply bottom part of C by Q22**T.
345 *
346  CALL sgemm( 'Transpose', 'No Transpose', n1, len, n2,
347  $ one, q( n1+1, n2+1 ), ldq, c( n1+1, i ), ldc,
348  $ one, work( n2+1 ), ldwork )
349 *
350 * Copy everything back.
351 *
352  CALL slacpy( 'All', m, len, work, ldwork, c( 1, i ),
353  $ ldc )
354  END DO
355  END IF
356  ELSE
357  IF( notran ) THEN
358  DO i = 1, m, nb
359  len = min( nb, m-i+1 )
360  ldwork = len
361 *
362 * Multiply right part of C by Q21.
363 *
364  CALL slacpy( 'All', len, n2, c( i, n1+1 ), ldc, work,
365  $ ldwork )
366  CALL strmm( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
367  $ len, n2, one, q( n1+1, 1 ), ldq, work,
368  $ ldwork )
369 *
370 * Multiply left part of C by Q11.
371 *
372  CALL sgemm( 'No Transpose', 'No Transpose', len, n2, n1,
373  $ one, c( i, 1 ), ldc, q, ldq, one, work,
374  $ ldwork )
375 *
376 * Multiply left part of C by Q12.
377 *
378  CALL slacpy( 'All', len, n1, c( i, 1 ), ldc,
379  $ work( 1 + n2*ldwork ), ldwork )
380  CALL strmm( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
381  $ len, n1, one, q( 1, n2+1 ), ldq,
382  $ work( 1 + n2*ldwork ), ldwork )
383 *
384 * Multiply right part of C by Q22.
385 *
386  CALL sgemm( 'No Transpose', 'No Transpose', len, n1, n2,
387  $ one, c( i, n1+1 ), ldc, q( n1+1, n2+1 ), ldq,
388  $ one, work( 1 + n2*ldwork ), ldwork )
389 *
390 * Copy everything back.
391 *
392  CALL slacpy( 'All', len, n, work, ldwork, c( i, 1 ),
393  $ ldc )
394  END DO
395  ELSE
396  DO i = 1, m, nb
397  len = min( nb, m-i+1 )
398  ldwork = len
399 *
400 * Multiply right part of C by Q12**T.
401 *
402  CALL slacpy( 'All', len, n1, c( i, n2+1 ), ldc, work,
403  $ ldwork )
404  CALL strmm( 'Right', 'Lower', 'Transpose', 'Non-Unit',
405  $ len, n1, one, q( 1, n2+1 ), ldq, work,
406  $ ldwork )
407 *
408 * Multiply left part of C by Q11**T.
409 *
410  CALL sgemm( 'No Transpose', 'Transpose', len, n1, n2,
411  $ one, c( i, 1 ), ldc, q, ldq, one, work,
412  $ ldwork )
413 *
414 * Multiply left part of C by Q21**T.
415 *
416  CALL slacpy( 'All', len, n2, c( i, 1 ), ldc,
417  $ work( 1 + n1*ldwork ), ldwork )
418  CALL strmm( 'Right', 'Upper', 'Transpose', 'Non-Unit',
419  $ len, n2, one, q( n1+1, 1 ), ldq,
420  $ work( 1 + n1*ldwork ), ldwork )
421 *
422 * Multiply right part of C by Q22**T.
423 *
424  CALL sgemm( 'No Transpose', 'Transpose', len, n2, n1,
425  $ one, c( i, n2+1 ), ldc, q( n1+1, n2+1 ), ldq,
426  $ one, work( 1 + n1*ldwork ), ldwork )
427 *
428 * Copy everything back.
429 *
430  CALL slacpy( 'All', len, n, work, ldwork, c( i, 1 ),
431  $ ldc )
432  END DO
433  END IF
434  END IF
435 *
436  work( 1 ) = REAL( lwkopt )
437  RETURN
438 *
439 * End of SORM22
440 *
441  END
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:189
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine sorm22(SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC, WORK, LWORK, INFO)
SORM22 multiplies a general matrix by a banded orthogonal matrix.
Definition: sorm22.f:165
subroutine strmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
STRMM
Definition: strmm.f:179