LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cporfsx ( character  UPLO,
character  EQUED,
integer  N,
integer  NRHS,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldaf, * )  AF,
integer  LDAF,
real, dimension( * )  S,
complex, dimension( ldb, * )  B,
integer  LDB,
complex, dimension( ldx, * )  X,
integer  LDX,
real  RCOND,
real, dimension( * )  BERR,
integer  N_ERR_BNDS,
real, dimension( nrhs, * )  ERR_BNDS_NORM,
real, dimension( nrhs, * )  ERR_BNDS_COMP,
integer  NPARAMS,
real, dimension(*)  PARAMS,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer  INFO 
)

CPORFSX

Download CPORFSX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    CPORFSX improves the computed solution to a system of linear
    equations when the coefficient matrix is symmetric positive
    definite, and provides error bounds and backward error estimates
    for the solution.  In addition to normwise error bound, the code
    provides maximum componentwise error bound if possible.  See
    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
    error bounds.

    The original system of linear equations may have been equilibrated
    before calling this routine, as described by arguments EQUED and S
    below. In this case, the solution and error bounds returned are
    for the original unequilibrated system.
     Some optional parameters are bundled in the PARAMS array.  These
     settings determine how refinement is performed, but often the
     defaults are acceptable.  If the defaults are acceptable, users
     can pass NPARAMS = 0 which prevents the source code from accessing
     the PARAMS argument.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]EQUED
          EQUED is CHARACTER*1
     Specifies the form of equilibration that was done to A
     before calling this routine. This is needed to compute
     the solution and error bounds correctly.
       = 'N':  No equilibration
       = 'Y':  Both row and column equilibration, i.e., A has been
               replaced by diag(S) * A * diag(S).
               The right hand side B has been changed accordingly.
[in]N
          N is INTEGER
     The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices B and X.  NRHS >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
     upper triangular part of A contains the upper triangular part
     of the matrix A, and the strictly lower triangular part of A
     is not referenced.  If UPLO = 'L', the leading N-by-N lower
     triangular part of A contains the lower triangular part of
     the matrix A, and the strictly upper triangular part of A is
     not referenced.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The triangular factor U or L from the Cholesky factorization
     A = U**T*U or A = L*L**T, as computed by SPOTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in,out]S
          S is REAL array, dimension (N)
     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
     the left and right by diag(S).  S is an input argument if FACT =
     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
     = 'Y', each element of S must be positive.  If S is output, each
     element of S is a power of the radix. If S is input, each element
     of S should be a power of the radix to ensure a reliable solution
     and error estimates. Scaling by powers of the radix does not cause
     rounding errors unless the result underflows or overflows.
     Rounding errors during scaling lead to refining with a matrix that
     is not equivalent to the input matrix, producing error estimates
     that may not be reliable.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
     The right hand side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]X
          X is COMPLEX array, dimension (LDX,NRHS)
     On entry, the solution matrix X, as computed by SGETRS.
     On exit, the improved solution matrix X.
[in]LDX
          LDX is INTEGER
     The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[out]BERR
          BERR is REAL array, dimension (NRHS)
     Componentwise relative backward error.  This is the
     componentwise relative backward error of each solution vector X(j)
     (i.e., the smallest relative change in any element of A or B that
     makes X(j) an exact solution).
[in]N_ERR_BNDS
          N_ERR_BNDS is INTEGER
     Number of error bounds to return for each right hand side
     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
     ERR_BNDS_COMP below.
[out]ERR_BNDS_NORM
          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     See Lapack Working Note 165 for further details and extra
     cautions.
[out]ERR_BNDS_COMP
          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     See Lapack Working Note 165 for further details and extra
     cautions.
[in]NPARAMS
          NPARAMS is INTEGER
     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
     PARAMS array is never referenced and default values are used.
[in,out]PARAMS
          PARAMS is REAL array, dimension NPARAMS
     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
     that entry will be filled with default value used for that
     parameter.  Only positions up to NPARAMS are accessed; defaults
     are used for higher-numbered parameters.

       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
            refinement or not.
         Default: 1.0
            = 0.0 : No refinement is performed, and no error bounds are
                    computed.
            = 1.0 : Use the double-precision refinement algorithm,
                    possibly with doubled-single computations if the
                    compilation environment does not support DOUBLE
                    PRECISION.
              (other values are reserved for future use)

       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
            computations allowed for refinement.
         Default: 10
         Aggressive: Set to 100 to permit convergence using approximate
                     factorizations or factorizations other than LU. If
                     the factorization uses a technique other than
                     Gaussian elimination, the guarantees in
                     err_bnds_norm and err_bnds_comp may no longer be
                     trustworthy.

       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
            will attempt to find a solution with small componentwise
            relative error in the double-precision algorithm.  Positive
            is true, 0.0 is false.
         Default: 1.0 (attempt componentwise convergence)
[out]WORK
          WORK is COMPLEX array, dimension (2*N)
[out]RWORK
          RWORK is REAL array, dimension (2*N)
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit. The solution to every right-hand side is
         guaranteed.
       < 0:  If INFO = -i, the i-th argument had an illegal value
       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
         has been completed, but the factor U is exactly singular, so
         the solution and error bounds could not be computed. RCOND = 0
         is returned.
       = N+J: The solution corresponding to the Jth right-hand side is
         not guaranteed. The solutions corresponding to other right-
         hand sides K with K > J may not be guaranteed as well, but
         only the first such right-hand side is reported. If a small
         componentwise error is not requested (PARAMS(3) = 0.0) then
         the Jth right-hand side is the first with a normwise error
         bound that is not guaranteed (the smallest J such
         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
         the Jth right-hand side is the first with either a normwise or
         componentwise error bound that is not guaranteed (the smallest
         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
         about all of the right-hand sides check ERR_BNDS_NORM or
         ERR_BNDS_COMP.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
April 2012

Definition at line 395 of file cporfsx.f.

395 *
396 * -- LAPACK computational routine (version 3.4.1) --
397 * -- LAPACK is a software package provided by Univ. of Tennessee, --
398 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
399 * April 2012
400 *
401 * .. Scalar Arguments ..
402  CHARACTER uplo, equed
403  INTEGER info, lda, ldaf, ldb, ldx, n, nrhs, nparams,
404  $ n_err_bnds
405  REAL rcond
406 * ..
407 * .. Array Arguments ..
408  COMPLEX a( lda, * ), af( ldaf, * ), b( ldb, * ),
409  $ x( ldx, * ), work( * )
410  REAL rwork( * ), s( * ), params(*), berr( * ),
411  $ err_bnds_norm( nrhs, * ),
412  $ err_bnds_comp( nrhs, * )
413 * ..
414 *
415 * ==================================================================
416 *
417 * .. Parameters ..
418  REAL zero, one
419  parameter ( zero = 0.0e+0, one = 1.0e+0 )
420  REAL itref_default, ithresh_default,
421  $ componentwise_default
422  REAL rthresh_default, dzthresh_default
423  parameter ( itref_default = 1.0 )
424  parameter ( ithresh_default = 10.0 )
425  parameter ( componentwise_default = 1.0 )
426  parameter ( rthresh_default = 0.5 )
427  parameter ( dzthresh_default = 0.25 )
428  INTEGER la_linrx_itref_i, la_linrx_ithresh_i,
429  $ la_linrx_cwise_i
430  parameter ( la_linrx_itref_i = 1,
431  $ la_linrx_ithresh_i = 2 )
432  parameter ( la_linrx_cwise_i = 3 )
433  INTEGER la_linrx_trust_i, la_linrx_err_i,
434  $ la_linrx_rcond_i
435  parameter ( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
436  parameter ( la_linrx_rcond_i = 3 )
437 * ..
438 * .. Local Scalars ..
439  CHARACTER(1) norm
440  LOGICAL rcequ
441  INTEGER j, prec_type, ref_type
442  INTEGER n_norms
443  REAL anorm, rcond_tmp
444  REAL illrcond_thresh, err_lbnd, cwise_wrong
445  LOGICAL ignore_cwise
446  INTEGER ithresh
447  REAL rthresh, unstable_thresh
448 * ..
449 * .. External Subroutines ..
451 * ..
452 * .. Intrinsic Functions ..
453  INTRINSIC max, sqrt, transfer
454 * ..
455 * .. External Functions ..
456  EXTERNAL lsame, blas_fpinfo_x, ilatrans, ilaprec
459  LOGICAL lsame
460  INTEGER blas_fpinfo_x
461  INTEGER ilatrans, ilaprec
462 * ..
463 * .. Executable Statements ..
464 *
465 * Check the input parameters.
466 *
467  info = 0
468  ref_type = int( itref_default )
469  IF ( nparams .GE. la_linrx_itref_i ) THEN
470  IF ( params( la_linrx_itref_i ) .LT. 0.0 ) THEN
471  params( la_linrx_itref_i ) = itref_default
472  ELSE
473  ref_type = params( la_linrx_itref_i )
474  END IF
475  END IF
476 *
477 * Set default parameters.
478 *
479  illrcond_thresh = REAL( N ) * slamch( 'Epsilon' )
480  ithresh = int( ithresh_default )
481  rthresh = rthresh_default
482  unstable_thresh = dzthresh_default
483  ignore_cwise = componentwise_default .EQ. 0.0
484 *
485  IF ( nparams.GE.la_linrx_ithresh_i ) THEN
486  IF ( params(la_linrx_ithresh_i ).LT.0.0 ) THEN
487  params( la_linrx_ithresh_i ) = ithresh
488  ELSE
489  ithresh = int( params( la_linrx_ithresh_i ) )
490  END IF
491  END IF
492  IF ( nparams.GE.la_linrx_cwise_i ) THEN
493  IF ( params(la_linrx_cwise_i ).LT.0.0 ) THEN
494  IF ( ignore_cwise ) THEN
495  params( la_linrx_cwise_i ) = 0.0
496  ELSE
497  params( la_linrx_cwise_i ) = 1.0
498  END IF
499  ELSE
500  ignore_cwise = params( la_linrx_cwise_i ) .EQ. 0.0
501  END IF
502  END IF
503  IF ( ref_type .EQ. 0 .OR. n_err_bnds .EQ. 0 ) THEN
504  n_norms = 0
505  ELSE IF ( ignore_cwise ) THEN
506  n_norms = 1
507  ELSE
508  n_norms = 2
509  END IF
510 *
511  rcequ = lsame( equed, 'Y' )
512 *
513 * Test input parameters.
514 *
515  IF (.NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
516  info = -1
517  ELSE IF( .NOT.rcequ .AND. .NOT.lsame( equed, 'N' ) ) THEN
518  info = -2
519  ELSE IF( n.LT.0 ) THEN
520  info = -3
521  ELSE IF( nrhs.LT.0 ) THEN
522  info = -4
523  ELSE IF( lda.LT.max( 1, n ) ) THEN
524  info = -6
525  ELSE IF( ldaf.LT.max( 1, n ) ) THEN
526  info = -8
527  ELSE IF( ldb.LT.max( 1, n ) ) THEN
528  info = -11
529  ELSE IF( ldx.LT.max( 1, n ) ) THEN
530  info = -13
531  END IF
532  IF( info.NE.0 ) THEN
533  CALL xerbla( 'CPORFSX', -info )
534  RETURN
535  END IF
536 *
537 * Quick return if possible.
538 *
539  IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
540  rcond = 1.0
541  DO j = 1, nrhs
542  berr( j ) = 0.0
543  IF ( n_err_bnds .GE. 1 ) THEN
544  err_bnds_norm( j, la_linrx_trust_i ) = 1.0
545  err_bnds_comp( j, la_linrx_trust_i ) = 1.0
546  END IF
547  IF ( n_err_bnds .GE. 2 ) THEN
548  err_bnds_norm( j, la_linrx_err_i ) = 0.0
549  err_bnds_comp( j, la_linrx_err_i ) = 0.0
550  END IF
551  IF ( n_err_bnds .GE. 3 ) THEN
552  err_bnds_norm( j, la_linrx_rcond_i ) = 1.0
553  err_bnds_comp( j, la_linrx_rcond_i ) = 1.0
554  END IF
555  END DO
556  RETURN
557  END IF
558 *
559 * Default to failure.
560 *
561  rcond = 0.0
562  DO j = 1, nrhs
563  berr( j ) = 1.0
564  IF ( n_err_bnds .GE. 1 ) THEN
565  err_bnds_norm( j, la_linrx_trust_i ) = 1.0
566  err_bnds_comp( j, la_linrx_trust_i ) = 1.0
567  END IF
568  IF ( n_err_bnds .GE. 2 ) THEN
569  err_bnds_norm( j, la_linrx_err_i ) = 1.0
570  err_bnds_comp( j, la_linrx_err_i ) = 1.0
571  END IF
572  IF ( n_err_bnds .GE. 3 ) THEN
573  err_bnds_norm( j, la_linrx_rcond_i ) = 0.0
574  err_bnds_comp( j, la_linrx_rcond_i ) = 0.0
575  END IF
576  END DO
577 *
578 * Compute the norm of A and the reciprocal of the condition
579 * number of A.
580 *
581  norm = 'I'
582  anorm = clanhe( norm, uplo, n, a, lda, rwork )
583  CALL cpocon( uplo, n, af, ldaf, anorm, rcond, work, rwork,
584  $ info )
585 *
586 * Perform refinement on each right-hand side
587 *
588  IF ( ref_type .NE. 0 ) THEN
589 
590  prec_type = ilaprec( 'D' )
591 
592  CALL cla_porfsx_extended( prec_type, uplo, n,
593  $ nrhs, a, lda, af, ldaf, rcequ, s, b,
594  $ ldb, x, ldx, berr, n_norms, err_bnds_norm, err_bnds_comp,
595  $ work, rwork, work(n+1),
596  $ transfer(rwork(1:2*n), (/ (zero, zero) /), n), rcond,
597  $ ithresh, rthresh, unstable_thresh, ignore_cwise,
598  $ info )
599  END IF
600 
601  err_lbnd = max( 10.0, sqrt( REAL( N ) ) ) * slamch( 'Epsilon' )
602  IF ( n_err_bnds .GE. 1 .AND. n_norms .GE. 1 ) THEN
603 *
604 * Compute scaled normwise condition number cond(A*C).
605 *
606  IF ( rcequ ) THEN
607  rcond_tmp = cla_porcond_c( uplo, n, a, lda, af, ldaf,
608  $ s, .true., info, work, rwork )
609  ELSE
610  rcond_tmp = cla_porcond_c( uplo, n, a, lda, af, ldaf,
611  $ s, .false., info, work, rwork )
612  END IF
613  DO j = 1, nrhs
614 *
615 * Cap the error at 1.0.
616 *
617  IF ( n_err_bnds .GE. la_linrx_err_i
618  $ .AND. err_bnds_norm( j, la_linrx_err_i ) .GT. 1.0 )
619  $ err_bnds_norm( j, la_linrx_err_i ) = 1.0
620 *
621 * Threshold the error (see LAWN).
622 *
623  IF ( rcond_tmp .LT. illrcond_thresh ) THEN
624  err_bnds_norm( j, la_linrx_err_i ) = 1.0
625  err_bnds_norm( j, la_linrx_trust_i ) = 0.0
626  IF ( info .LE. n ) info = n + j
627  ELSE IF ( err_bnds_norm( j, la_linrx_err_i ) .LT. err_lbnd )
628  $ THEN
629  err_bnds_norm( j, la_linrx_err_i ) = err_lbnd
630  err_bnds_norm( j, la_linrx_trust_i ) = 1.0
631  END IF
632 *
633 * Save the condition number.
634 *
635  IF ( n_err_bnds .GE. la_linrx_rcond_i ) THEN
636  err_bnds_norm( j, la_linrx_rcond_i ) = rcond_tmp
637  END IF
638 
639  END DO
640  END IF
641 
642  IF (n_err_bnds .GE. 1 .AND. n_norms .GE. 2) THEN
643 *
644 * Compute componentwise condition number cond(A*diag(Y(:,J))) for
645 * each right-hand side using the current solution as an estimate of
646 * the true solution. If the componentwise error estimate is too
647 * large, then the solution is a lousy estimate of truth and the
648 * estimated RCOND may be too optimistic. To avoid misleading users,
649 * the inverse condition number is set to 0.0 when the estimated
650 * cwise error is at least CWISE_WRONG.
651 *
652  cwise_wrong = sqrt( slamch( 'Epsilon' ) )
653  DO j = 1, nrhs
654  IF (err_bnds_comp( j, la_linrx_err_i ) .LT. cwise_wrong )
655  $ THEN
656  rcond_tmp = cla_porcond_x( uplo, n, a, lda, af, ldaf,
657  $ x(1,j), info, work, rwork )
658  ELSE
659  rcond_tmp = 0.0
660  END IF
661 *
662 * Cap the error at 1.0.
663 *
664  IF ( n_err_bnds .GE. la_linrx_err_i
665  $ .AND. err_bnds_comp( j, la_linrx_err_i ) .GT. 1.0 )
666  $ err_bnds_comp( j, la_linrx_err_i ) = 1.0
667 *
668 * Threshold the error (see LAWN).
669 *
670  IF (rcond_tmp .LT. illrcond_thresh) THEN
671  err_bnds_comp( j, la_linrx_err_i ) = 1.0
672  err_bnds_comp( j, la_linrx_trust_i ) = 0.0
673  IF ( params( la_linrx_cwise_i ) .EQ. 1.0
674  $ .AND. info.LT.n + j ) info = n + j
675  ELSE IF ( err_bnds_comp( j, la_linrx_err_i )
676  $ .LT. err_lbnd ) THEN
677  err_bnds_comp( j, la_linrx_err_i ) = err_lbnd
678  err_bnds_comp( j, la_linrx_trust_i ) = 1.0
679  END IF
680 *
681 * Save the condition number.
682 *
683  IF ( n_err_bnds .GE. la_linrx_rcond_i ) THEN
684  err_bnds_comp( j, la_linrx_rcond_i ) = rcond_tmp
685  END IF
686 
687  END DO
688  END IF
689 *
690  RETURN
691 *
692 * End of CPORFSX
693 *
integer function ilatrans(TRANS)
ILATRANS
Definition: ilatrans.f:60
subroutine cla_porfsx_extended(PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)
CLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or H...
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
Definition: clanhe.f:126
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cpocon(UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
CPOCON
Definition: cpocon.f:123
integer function ilaprec(PREC)
ILAPREC
Definition: ilaprec.f:60
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
real function cla_porcond_x(UPLO, N, A, LDA, AF, LDAF, X, INFO, WORK, RWORK)
CLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-def...
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
real function cla_porcond_c(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positiv...

Here is the call graph for this function:

Here is the caller graph for this function: