394 $ af, ldaf, ipiv, colequ, c, b, ldb,
395 $ y, ldy, berr_out, n_norms,
396 $ err_bnds_norm, err_bnds_comp, res,
397 $ ayb, dy, y_tail, rcond, ithresh,
398 $ rthresh, dz_ub, ignore_cwise,
407 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
410 LOGICAL COLEQU, IGNORE_CWISE
411 DOUBLE PRECISION RTHRESH, DZ_UB
415 COMPLEX*16 A( lda, * ), AF( ldaf, * ), B( ldb, * ),
416 $ y( ldy, * ), res( * ), dy( * ), y_tail( * )
417 DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
418 $ err_bnds_norm( nrhs, * ),
419 $ err_bnds_comp( nrhs, * )
425 INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE,
427 DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
428 $ dzrat, prevnormdx, prev_dz_z, dxratmax,
429 $ dzratmax, dx_x, dz_z, final_dx_x, final_dz_z,
430 $ eps, hugeval, incr_thresh
431 LOGICAL INCR_PREC, UPPER
435 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
436 $ noprog_state, base_residual, extra_residual,
438 parameter ( unstable_state = 0, working_state = 1,
439 $ conv_state = 2, noprog_state = 3 )
440 parameter ( base_residual = 0, extra_residual = 1,
442 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
443 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
444 INTEGER CMP_ERR_I, PIV_GROWTH_I
445 parameter ( final_nrm_err_i = 1, final_cmp_err_i = 2,
447 parameter ( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
448 parameter ( cmp_rcond_i = 7, cmp_err_i = 8,
450 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
452 parameter ( la_linrx_itref_i = 1,
453 $ la_linrx_ithresh_i = 2 )
454 parameter ( la_linrx_cwise_i = 3 )
455 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
457 parameter ( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
458 parameter ( la_linrx_rcond_i = 3 )
469 DOUBLE PRECISION DLAMCH
472 INTRINSIC abs, dble, dimag, max, min
475 DOUBLE PRECISION CABS1
478 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
483 upper = lsame( uplo,
'U' )
484 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
486 ELSE IF( n.LT.0 )
THEN
488 ELSE IF( nrhs.LT.0 )
THEN
490 ELSE IF( lda.LT.max( 1, n ) )
THEN
492 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
494 ELSE IF( ldb.LT.max( 1, n ) )
THEN
496 ELSE IF( ldy.LT.max( 1, n ) )
THEN
500 CALL xerbla(
'ZLA_HERFSX_EXTENDED', -info )
503 eps = dlamch(
'Epsilon' )
504 hugeval = dlamch(
'Overflow' )
506 hugeval = hugeval * hugeval
508 incr_thresh = dble( n ) * eps
510 IF ( lsame( uplo,
'L' ) )
THEN
511 uplo2 = ilauplo(
'L' )
513 uplo2 = ilauplo(
'U' )
517 y_prec_state = extra_residual
518 IF ( y_prec_state .EQ. extra_y )
THEN
535 x_state = working_state
536 z_state = unstable_state
544 CALL zcopy( n, b( 1, j ), 1, res, 1 )
545 IF ( y_prec_state .EQ. base_residual )
THEN
546 CALL zhemv( uplo, n, dcmplx(-1.0d+0), a, lda, y( 1, j ),
547 $ 1, dcmplx(1.0d+0), res, 1 )
548 ELSE IF ( y_prec_state .EQ. extra_residual )
THEN
549 CALL blas_zhemv_x( uplo2, n, dcmplx(-1.0d+0), a, lda,
550 $ y( 1, j ), 1, dcmplx(1.0d+0), res, 1, prec_type)
552 CALL blas_zhemv2_x(uplo2, n, dcmplx(-1.0d+0), a, lda,
553 $ y(1, j), y_tail, 1, dcmplx(1.0d+0), res, 1,
558 CALL zcopy( n, res, 1, dy, 1 )
559 CALL zhetrs( uplo, n, 1, af, ldaf, ipiv, dy, n, info )
570 yk = cabs1( y( i, j ) )
571 dyk = cabs1( dy( i ) )
573 IF (yk .NE. 0.0d+0)
THEN
574 dz_z = max( dz_z, dyk / yk )
575 ELSE IF ( dyk .NE. 0.0d+0 )
THEN
579 ymin = min( ymin, yk )
581 normy = max( normy, yk )
584 normx = max( normx, yk * c( i ) )
585 normdx = max( normdx, dyk * c( i ) )
588 normdx = max( normdx, dyk )
592 IF ( normx .NE. 0.0d+0 )
THEN
593 dx_x = normdx / normx
594 ELSE IF ( normdx .EQ. 0.0d+0 )
THEN
600 dxrat = normdx / prevnormdx
601 dzrat = dz_z / prev_dz_z
605 IF ( ymin*rcond .LT. incr_thresh*normy
606 $ .AND. y_prec_state .LT. extra_y )
609 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
610 $ x_state = working_state
611 IF ( x_state .EQ. working_state )
THEN
612 IF ( dx_x .LE. eps )
THEN
614 ELSE IF ( dxrat .GT. rthresh )
THEN
615 IF ( y_prec_state .NE. extra_y )
THEN
618 x_state = noprog_state
621 IF (dxrat .GT. dxratmax) dxratmax = dxrat
623 IF ( x_state .GT. working_state ) final_dx_x = dx_x
626 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
627 $ z_state = working_state
628 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
629 $ z_state = working_state
630 IF ( z_state .EQ. working_state )
THEN
631 IF ( dz_z .LE. eps )
THEN
633 ELSE IF ( dz_z .GT. dz_ub )
THEN
634 z_state = unstable_state
637 ELSE IF ( dzrat .GT. rthresh )
THEN
638 IF ( y_prec_state .NE. extra_y )
THEN
641 z_state = noprog_state
644 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
646 IF ( z_state .GT. working_state ) final_dz_z = dz_z
649 IF ( x_state.NE.working_state.AND.
650 $ ( ignore_cwise.OR.z_state.NE.working_state ) )
653 IF ( incr_prec )
THEN
655 y_prec_state = y_prec_state + 1
666 IF ( y_prec_state .LT. extra_y )
THEN
667 CALL zaxpy( n, dcmplx(1.0d+0), dy, 1, y(1,j), 1 )
678 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
679 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
683 IF ( n_norms .GE. 1 )
THEN
684 err_bnds_norm( j, la_linrx_err_i ) =
685 $ final_dx_x / (1 - dxratmax)
687 IF (n_norms .GE. 2)
THEN
688 err_bnds_comp( j, la_linrx_err_i ) =
689 $ final_dz_z / (1 - dzratmax)
700 CALL zcopy( n, b( 1, j ), 1, res, 1 )
701 CALL zhemv( uplo, n, dcmplx(-1.0d+0), a, lda, y(1,j), 1,
702 $ dcmplx(1.0d+0), res, 1 )
705 ayb( i ) = cabs1( b( i, j ) )
711 $ a, lda, y(1, j), 1, 1.0d+0, ayb, 1 )
subroutine zhemv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
ZHEMV
subroutine zla_heamv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
ZLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bou...
subroutine zla_lin_berr(N, NZ, NRHS, RES, AYB, BERR)
ZLA_LIN_BERR computes a component-wise relative backward error.
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
subroutine zla_herfsx_extended(PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)
ZLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian inde...
subroutine zla_wwaddw(N, X, Y, W)
ZLA_WWADDW adds a vector into a doubled-single vector.
subroutine xerbla(SRNAME, INFO)
XERBLA
integer function ilauplo(UPLO)
ILAUPLO
subroutine zhetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZHETRS
subroutine zaxpy(N, ZA, ZX, INCX, ZY, INCY)
ZAXPY