142 REAL FUNCTION cla_gercond_c( TRANS, N, A, LDA, AF, LDAF, IPIV, C,
143 $ capply, info, work, rwork )
153 INTEGER N, LDA, LDAF, INFO
157 COMPLEX A( lda, * ), AF( ldaf, * ), WORK( * )
158 REAL C( * ), RWORK( * )
166 REAL AINVNM, ANORM, TMP
180 INTRINSIC abs, max,
REAL, AIMAG
186 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( AIMAG( zdum ) )
192 notrans = lsame( trans,
'N' )
193 IF ( .NOT. notrans .AND. .NOT. lsame( trans,
'T' ) .AND. .NOT.
194 $ lsame( trans,
'C' ) )
THEN
196 ELSE IF( n.LT.0 )
THEN
198 ELSE IF( lda.LT.max( 1, n ) )
THEN
200 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
204 CALL xerbla(
'CLA_GERCOND_C', -info )
216 tmp = tmp + cabs1( a( i, j ) ) / c( j )
220 tmp = tmp + cabs1( a( i, j ) )
224 anorm = max( anorm, tmp )
231 tmp = tmp + cabs1( a( j, i ) ) / c( j )
235 tmp = tmp + cabs1( a( j, i ) )
239 anorm = max( anorm, tmp )
248 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
258 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
265 work( i ) = work( i ) * rwork( i )
269 CALL cgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
272 CALL cgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
280 work( i ) = work( i ) * c( i )
289 work( i ) = work( i ) * c( i )
294 CALL cgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
297 CALL cgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
304 work( i ) = work( i ) * rwork( i )
312 IF( ainvnm .NE. 0.0e+0 )
subroutine cgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CGETRS
subroutine xerbla(SRNAME, INFO)
XERBLA
real function cla_gercond_c(TRANS, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK)
CLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices...
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...