LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
chsein.f
Go to the documentation of this file.
1 *> \brief \b CHSEIN
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CHSEIN + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chsein.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chsein.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chsein.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
22 * LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
23 * IFAILR, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER EIGSRC, INITV, SIDE
27 * INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
28 * ..
29 * .. Array Arguments ..
30 * LOGICAL SELECT( * )
31 * INTEGER IFAILL( * ), IFAILR( * )
32 * REAL RWORK( * )
33 * COMPLEX H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
34 * $ W( * ), WORK( * )
35 * ..
36 *
37 *
38 *> \par Purpose:
39 * =============
40 *>
41 *> \verbatim
42 *>
43 *> CHSEIN uses inverse iteration to find specified right and/or left
44 *> eigenvectors of a complex upper Hessenberg matrix H.
45 *>
46 *> The right eigenvector x and the left eigenvector y of the matrix H
47 *> corresponding to an eigenvalue w are defined by:
48 *>
49 *> H * x = w * x, y**h * H = w * y**h
50 *>
51 *> where y**h denotes the conjugate transpose of the vector y.
52 *> \endverbatim
53 *
54 * Arguments:
55 * ==========
56 *
57 *> \param[in] SIDE
58 *> \verbatim
59 *> SIDE is CHARACTER*1
60 *> = 'R': compute right eigenvectors only;
61 *> = 'L': compute left eigenvectors only;
62 *> = 'B': compute both right and left eigenvectors.
63 *> \endverbatim
64 *>
65 *> \param[in] EIGSRC
66 *> \verbatim
67 *> EIGSRC is CHARACTER*1
68 *> Specifies the source of eigenvalues supplied in W:
69 *> = 'Q': the eigenvalues were found using CHSEQR; thus, if
70 *> H has zero subdiagonal elements, and so is
71 *> block-triangular, then the j-th eigenvalue can be
72 *> assumed to be an eigenvalue of the block containing
73 *> the j-th row/column. This property allows CHSEIN to
74 *> perform inverse iteration on just one diagonal block.
75 *> = 'N': no assumptions are made on the correspondence
76 *> between eigenvalues and diagonal blocks. In this
77 *> case, CHSEIN must always perform inverse iteration
78 *> using the whole matrix H.
79 *> \endverbatim
80 *>
81 *> \param[in] INITV
82 *> \verbatim
83 *> INITV is CHARACTER*1
84 *> = 'N': no initial vectors are supplied;
85 *> = 'U': user-supplied initial vectors are stored in the arrays
86 *> VL and/or VR.
87 *> \endverbatim
88 *>
89 *> \param[in] SELECT
90 *> \verbatim
91 *> SELECT is LOGICAL array, dimension (N)
92 *> Specifies the eigenvectors to be computed. To select the
93 *> eigenvector corresponding to the eigenvalue W(j),
94 *> SELECT(j) must be set to .TRUE..
95 *> \endverbatim
96 *>
97 *> \param[in] N
98 *> \verbatim
99 *> N is INTEGER
100 *> The order of the matrix H. N >= 0.
101 *> \endverbatim
102 *>
103 *> \param[in] H
104 *> \verbatim
105 *> H is COMPLEX array, dimension (LDH,N)
106 *> The upper Hessenberg matrix H.
107 *> If a NaN is detected in H, the routine will return with INFO=-6.
108 *> \endverbatim
109 *>
110 *> \param[in] LDH
111 *> \verbatim
112 *> LDH is INTEGER
113 *> The leading dimension of the array H. LDH >= max(1,N).
114 *> \endverbatim
115 *>
116 *> \param[in,out] W
117 *> \verbatim
118 *> W is COMPLEX array, dimension (N)
119 *> On entry, the eigenvalues of H.
120 *> On exit, the real parts of W may have been altered since
121 *> close eigenvalues are perturbed slightly in searching for
122 *> independent eigenvectors.
123 *> \endverbatim
124 *>
125 *> \param[in,out] VL
126 *> \verbatim
127 *> VL is COMPLEX array, dimension (LDVL,MM)
128 *> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
129 *> contain starting vectors for the inverse iteration for the
130 *> left eigenvectors; the starting vector for each eigenvector
131 *> must be in the same column in which the eigenvector will be
132 *> stored.
133 *> On exit, if SIDE = 'L' or 'B', the left eigenvectors
134 *> specified by SELECT will be stored consecutively in the
135 *> columns of VL, in the same order as their eigenvalues.
136 *> If SIDE = 'R', VL is not referenced.
137 *> \endverbatim
138 *>
139 *> \param[in] LDVL
140 *> \verbatim
141 *> LDVL is INTEGER
142 *> The leading dimension of the array VL.
143 *> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
144 *> \endverbatim
145 *>
146 *> \param[in,out] VR
147 *> \verbatim
148 *> VR is COMPLEX array, dimension (LDVR,MM)
149 *> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
150 *> contain starting vectors for the inverse iteration for the
151 *> right eigenvectors; the starting vector for each eigenvector
152 *> must be in the same column in which the eigenvector will be
153 *> stored.
154 *> On exit, if SIDE = 'R' or 'B', the right eigenvectors
155 *> specified by SELECT will be stored consecutively in the
156 *> columns of VR, in the same order as their eigenvalues.
157 *> If SIDE = 'L', VR is not referenced.
158 *> \endverbatim
159 *>
160 *> \param[in] LDVR
161 *> \verbatim
162 *> LDVR is INTEGER
163 *> The leading dimension of the array VR.
164 *> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
165 *> \endverbatim
166 *>
167 *> \param[in] MM
168 *> \verbatim
169 *> MM is INTEGER
170 *> The number of columns in the arrays VL and/or VR. MM >= M.
171 *> \endverbatim
172 *>
173 *> \param[out] M
174 *> \verbatim
175 *> M is INTEGER
176 *> The number of columns in the arrays VL and/or VR required to
177 *> store the eigenvectors (= the number of .TRUE. elements in
178 *> SELECT).
179 *> \endverbatim
180 *>
181 *> \param[out] WORK
182 *> \verbatim
183 *> WORK is COMPLEX array, dimension (N*N)
184 *> \endverbatim
185 *>
186 *> \param[out] RWORK
187 *> \verbatim
188 *> RWORK is REAL array, dimension (N)
189 *> \endverbatim
190 *>
191 *> \param[out] IFAILL
192 *> \verbatim
193 *> IFAILL is INTEGER array, dimension (MM)
194 *> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
195 *> eigenvector in the i-th column of VL (corresponding to the
196 *> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
197 *> eigenvector converged satisfactorily.
198 *> If SIDE = 'R', IFAILL is not referenced.
199 *> \endverbatim
200 *>
201 *> \param[out] IFAILR
202 *> \verbatim
203 *> IFAILR is INTEGER array, dimension (MM)
204 *> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
205 *> eigenvector in the i-th column of VR (corresponding to the
206 *> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
207 *> eigenvector converged satisfactorily.
208 *> If SIDE = 'L', IFAILR is not referenced.
209 *> \endverbatim
210 *>
211 *> \param[out] INFO
212 *> \verbatim
213 *> INFO is INTEGER
214 *> = 0: successful exit
215 *> < 0: if INFO = -i, the i-th argument had an illegal value
216 *> > 0: if INFO = i, i is the number of eigenvectors which
217 *> failed to converge; see IFAILL and IFAILR for further
218 *> details.
219 *> \endverbatim
220 *
221 * Authors:
222 * ========
223 *
224 *> \author Univ. of Tennessee
225 *> \author Univ. of California Berkeley
226 *> \author Univ. of Colorado Denver
227 *> \author NAG Ltd.
228 *
229 *> \date November 2013
230 *
231 *> \ingroup complexOTHERcomputational
232 *
233 *> \par Further Details:
234 * =====================
235 *>
236 *> \verbatim
237 *>
238 *> Each eigenvector is normalized so that the element of largest
239 *> magnitude has magnitude 1; here the magnitude of a complex number
240 *> (x,y) is taken to be |x|+|y|.
241 *> \endverbatim
242 *>
243 * =====================================================================
244  SUBROUTINE chsein( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
245  $ ldvl, vr, ldvr, mm, m, work, rwork, ifaill,
246  $ ifailr, info )
247 *
248 * -- LAPACK computational routine (version 3.5.0) --
249 * -- LAPACK is a software package provided by Univ. of Tennessee, --
250 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
251 * November 2013
252 *
253 * .. Scalar Arguments ..
254  CHARACTER EIGSRC, INITV, SIDE
255  INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
256 * ..
257 * .. Array Arguments ..
258  LOGICAL SELECT( * )
259  INTEGER IFAILL( * ), IFAILR( * )
260  REAL RWORK( * )
261  COMPLEX H( ldh, * ), VL( ldvl, * ), VR( ldvr, * ),
262  $ w( * ), work( * )
263 * ..
264 *
265 * =====================================================================
266 *
267 * .. Parameters ..
268  COMPLEX ZERO
269  parameter ( zero = ( 0.0e+0, 0.0e+0 ) )
270  REAL RZERO
271  parameter ( rzero = 0.0e+0 )
272 * ..
273 * .. Local Scalars ..
274  LOGICAL BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
275  INTEGER I, IINFO, K, KL, KLN, KR, KS, LDWORK
276  REAL EPS3, HNORM, SMLNUM, ULP, UNFL
277  COMPLEX CDUM, WK
278 * ..
279 * .. External Functions ..
280  LOGICAL LSAME, SISNAN
281  REAL CLANHS, SLAMCH
282  EXTERNAL lsame, clanhs, slamch, sisnan
283 * ..
284 * .. External Subroutines ..
285  EXTERNAL claein, xerbla
286 * ..
287 * .. Intrinsic Functions ..
288  INTRINSIC abs, aimag, max, real
289 * ..
290 * .. Statement Functions ..
291  REAL CABS1
292 * ..
293 * .. Statement Function definitions ..
294  cabs1( cdum ) = abs( REAL( CDUM ) ) + abs( AIMAG( cdum ) )
295 * ..
296 * .. Executable Statements ..
297 *
298 * Decode and test the input parameters.
299 *
300  bothv = lsame( side, 'B' )
301  rightv = lsame( side, 'R' ) .OR. bothv
302  leftv = lsame( side, 'L' ) .OR. bothv
303 *
304  fromqr = lsame( eigsrc, 'Q' )
305 *
306  noinit = lsame( initv, 'N' )
307 *
308 * Set M to the number of columns required to store the selected
309 * eigenvectors.
310 *
311  m = 0
312  DO 10 k = 1, n
313  IF( SELECT( k ) )
314  $ m = m + 1
315  10 CONTINUE
316 *
317  info = 0
318  IF( .NOT.rightv .AND. .NOT.leftv ) THEN
319  info = -1
320  ELSE IF( .NOT.fromqr .AND. .NOT.lsame( eigsrc, 'N' ) ) THEN
321  info = -2
322  ELSE IF( .NOT.noinit .AND. .NOT.lsame( initv, 'U' ) ) THEN
323  info = -3
324  ELSE IF( n.LT.0 ) THEN
325  info = -5
326  ELSE IF( ldh.LT.max( 1, n ) ) THEN
327  info = -7
328  ELSE IF( ldvl.LT.1 .OR. ( leftv .AND. ldvl.LT.n ) ) THEN
329  info = -10
330  ELSE IF( ldvr.LT.1 .OR. ( rightv .AND. ldvr.LT.n ) ) THEN
331  info = -12
332  ELSE IF( mm.LT.m ) THEN
333  info = -13
334  END IF
335  IF( info.NE.0 ) THEN
336  CALL xerbla( 'CHSEIN', -info )
337  RETURN
338  END IF
339 *
340 * Quick return if possible.
341 *
342  IF( n.EQ.0 )
343  $ RETURN
344 *
345 * Set machine-dependent constants.
346 *
347  unfl = slamch( 'Safe minimum' )
348  ulp = slamch( 'Precision' )
349  smlnum = unfl*( n / ulp )
350 *
351  ldwork = n
352 *
353  kl = 1
354  kln = 0
355  IF( fromqr ) THEN
356  kr = 0
357  ELSE
358  kr = n
359  END IF
360  ks = 1
361 *
362  DO 100 k = 1, n
363  IF( SELECT( k ) ) THEN
364 *
365 * Compute eigenvector(s) corresponding to W(K).
366 *
367  IF( fromqr ) THEN
368 *
369 * If affiliation of eigenvalues is known, check whether
370 * the matrix splits.
371 *
372 * Determine KL and KR such that 1 <= KL <= K <= KR <= N
373 * and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
374 * KR = N).
375 *
376 * Then inverse iteration can be performed with the
377 * submatrix H(KL:N,KL:N) for a left eigenvector, and with
378 * the submatrix H(1:KR,1:KR) for a right eigenvector.
379 *
380  DO 20 i = k, kl + 1, -1
381  IF( h( i, i-1 ).EQ.zero )
382  $ GO TO 30
383  20 CONTINUE
384  30 CONTINUE
385  kl = i
386  IF( k.GT.kr ) THEN
387  DO 40 i = k, n - 1
388  IF( h( i+1, i ).EQ.zero )
389  $ GO TO 50
390  40 CONTINUE
391  50 CONTINUE
392  kr = i
393  END IF
394  END IF
395 *
396  IF( kl.NE.kln ) THEN
397  kln = kl
398 *
399 * Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
400 * has not ben computed before.
401 *
402  hnorm = clanhs( 'I', kr-kl+1, h( kl, kl ), ldh, rwork )
403  IF( sisnan( hnorm ) ) THEN
404  info = -6
405  RETURN
406  ELSE IF( (hnorm.GT.rzero) ) THEN
407  eps3 = hnorm*ulp
408  ELSE
409  eps3 = smlnum
410  END IF
411  END IF
412 *
413 * Perturb eigenvalue if it is close to any previous
414 * selected eigenvalues affiliated to the submatrix
415 * H(KL:KR,KL:KR). Close roots are modified by EPS3.
416 *
417  wk = w( k )
418  60 CONTINUE
419  DO 70 i = k - 1, kl, -1
420  IF( SELECT( i ) .AND. cabs1( w( i )-wk ).LT.eps3 ) THEN
421  wk = wk + eps3
422  GO TO 60
423  END IF
424  70 CONTINUE
425  w( k ) = wk
426 *
427  IF( leftv ) THEN
428 *
429 * Compute left eigenvector.
430 *
431  CALL claein( .false., noinit, n-kl+1, h( kl, kl ), ldh,
432  $ wk, vl( kl, ks ), work, ldwork, rwork, eps3,
433  $ smlnum, iinfo )
434  IF( iinfo.GT.0 ) THEN
435  info = info + 1
436  ifaill( ks ) = k
437  ELSE
438  ifaill( ks ) = 0
439  END IF
440  DO 80 i = 1, kl - 1
441  vl( i, ks ) = zero
442  80 CONTINUE
443  END IF
444  IF( rightv ) THEN
445 *
446 * Compute right eigenvector.
447 *
448  CALL claein( .true., noinit, kr, h, ldh, wk, vr( 1, ks ),
449  $ work, ldwork, rwork, eps3, smlnum, iinfo )
450  IF( iinfo.GT.0 ) THEN
451  info = info + 1
452  ifailr( ks ) = k
453  ELSE
454  ifailr( ks ) = 0
455  END IF
456  DO 90 i = kr + 1, n
457  vr( i, ks ) = zero
458  90 CONTINUE
459  END IF
460  ks = ks + 1
461  END IF
462  100 CONTINUE
463 *
464  RETURN
465 *
466 * End of CHSEIN
467 *
468  END
subroutine chsein(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)
CHSEIN
Definition: chsein.f:247
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine claein(RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK, EPS3, SMLNUM, INFO)
CLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iterat...
Definition: claein.f:151