LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine chpt21 ( integer ITYPE, character UPLO, integer N, integer KBAND, complex, dimension( * ) AP, real, dimension( * ) D, real, dimension( * ) E, complex, dimension( ldu, * ) U, integer LDU, complex, dimension( * ) VP, complex, dimension( * ) TAU, complex, dimension( * ) WORK, real, dimension( * ) RWORK, real, dimension( 2 ) RESULT )

CHPT21

Purpose:
``` CHPT21  generally checks a decomposition of the form

A = U S UC>
where * means conjugate transpose, A is hermitian, U is
unitary, and S is diagonal (if KBAND=0) or (real) symmetric
tridiagonal (if KBAND=1).  If ITYPE=1, then U is represented as
a dense matrix, otherwise the U is expressed as a product of
Householder transformations, whose vectors are stored in the
array "V" and whose scaling constants are in "TAU"; we shall
use the letter "V" to refer to the product of Householder
transformations (which should be equal to U).

Specifically, if ITYPE=1, then:

RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC>         RESULT(2) = | I - UU* | / ( n ulp )

If ITYPE=2, then:

RESULT(1) = | A - V S V* | / ( |A| n ulp )

If ITYPE=3, then:

RESULT(1) = | I - UV* | / ( n ulp )

Packed storage means that, for example, if UPLO='U', then the columns
of the upper triangle of A are stored one after another, so that
A(1,j+1) immediately follows A(j,j) in the array AP.  Similarly, if
UPLO='L', then the columns of the lower triangle of A are stored one
after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
in the array AP.  This means that A(i,j) is stored in:

AP( i + j*(j-1)/2 )                 if UPLO='U'

AP( i + (2*n-j)*(j-1)/2 )           if UPLO='L'

The array VP bears the same relation to the matrix V that A does to
AP.

For ITYPE > 1, the transformation U is expressed as a product
of Householder transformations:

If UPLO='U', then  V = H(n-1)...H(1),  where

H(j) = I  -  tau(j) v(j) v(j)C>
and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
(i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
the j-th element is 1, and the last n-j elements are 0.

If UPLO='L', then  V = H(1)...H(n-1),  where

H(j) = I  -  tau(j) v(j) v(j)C>
and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
(j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)```
Parameters
 [in] ITYPE ``` ITYPE is INTEGER Specifies the type of tests to be performed. 1: U expressed as a dense unitary matrix: RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp ) 2: U expressed as a product V of Housholder transformations: RESULT(1) = | A - V S V* | / ( |A| n ulp ) 3: U expressed both as a dense unitary matrix and as a product of Housholder transformations: RESULT(1) = | I - UV* | / ( n ulp )``` [in] UPLO ``` UPLO is CHARACTER If UPLO='U', the upper triangle of A and V will be used and the (strictly) lower triangle will not be referenced. If UPLO='L', the lower triangle of A and V will be used and the (strictly) upper triangle will not be referenced.``` [in] N ``` N is INTEGER The size of the matrix. If it is zero, CHPT21 does nothing. It must be at least zero.``` [in] KBAND ``` KBAND is INTEGER The bandwidth of the matrix. It may only be zero or one. If zero, then S is diagonal, and E is not referenced. If one, then S is symmetric tri-diagonal.``` [in] AP ``` AP is COMPLEX array, dimension (N*(N+1)/2) The original (unfactored) matrix. It is assumed to be hermitian, and contains the columns of just the upper triangle (UPLO='U') or only the lower triangle (UPLO='L'), packed one after another.``` [in] D ``` D is REAL array, dimension (N) The diagonal of the (symmetric tri-) diagonal matrix.``` [in] E ``` E is REAL array, dimension (N) The off-diagonal of the (symmetric tri-) diagonal matrix. E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and (3,2) element, etc. Not referenced if KBAND=0.``` [in] U ``` U is COMPLEX array, dimension (LDU, N) If ITYPE=1 or 3, this contains the unitary matrix in the decomposition, expressed as a dense matrix. If ITYPE=2, then it is not referenced.``` [in] LDU ``` LDU is INTEGER The leading dimension of U. LDU must be at least N and at least 1.``` [in] VP ``` VP is REAL array, dimension (N*(N+1)/2) If ITYPE=2 or 3, the columns of this array contain the Householder vectors used to describe the unitary matrix in the decomposition, as described in purpose. *NOTE* If ITYPE=2 or 3, V is modified and restored. The subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') is set to one, and later reset to its original value, during the course of the calculation. If ITYPE=1, then it is neither referenced nor modified.``` [in] TAU ``` TAU is COMPLEX array, dimension (N) If ITYPE >= 2, then TAU(j) is the scalar factor of v(j) v(j)* in the Householder transformation H(j) of the product U = H(1)...H(n-2) If ITYPE < 2, then TAU is not referenced.``` [out] WORK ``` WORK is COMPLEX array, dimension (N**2) Workspace.``` [out] RWORK ``` RWORK is REAL array, dimension (N) Workspace.``` [out] RESULT ``` RESULT is REAL array, dimension (2) The values computed by the two tests described above. The values are currently limited to 1/ulp, to avoid overflow. RESULT(1) is always modified. RESULT(2) is modified only if ITYPE=1.```
Date
November 2011

Definition at line 225 of file chpt21.f.

225 *
226 * -- LAPACK test routine (version 3.4.0) --
227 * -- LAPACK is a software package provided by Univ. of Tennessee, --
228 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
229 * November 2011
230 *
231 * .. Scalar Arguments ..
232  CHARACTER uplo
233  INTEGER itype, kband, ldu, n
234 * ..
235 * .. Array Arguments ..
236  REAL d( * ), e( * ), result( 2 ), rwork( * )
237  COMPLEX ap( * ), tau( * ), u( ldu, * ), vp( * ),
238  \$ work( * )
239 * ..
240 *
241 * =====================================================================
242 *
243 * .. Parameters ..
244  REAL zero, one, ten
245  parameter ( zero = 0.0e+0, one = 1.0e+0, ten = 10.0e+0 )
246  REAL half
247  parameter ( half = 1.0e+0 / 2.0e+0 )
248  COMPLEX czero, cone
249  parameter ( czero = ( 0.0e+0, 0.0e+0 ),
250  \$ cone = ( 1.0e+0, 0.0e+0 ) )
251 * ..
252 * .. Local Scalars ..
253  LOGICAL lower
254  CHARACTER cuplo
255  INTEGER iinfo, j, jp, jp1, jr, lap
256  REAL anorm, ulp, unfl, wnorm
257  COMPLEX temp, vsave
258 * ..
259 * .. External Functions ..
260  LOGICAL lsame
261  REAL clange, clanhp, slamch
262  COMPLEX cdotc
263  EXTERNAL lsame, clange, clanhp, slamch, cdotc
264 * ..
265 * .. External Subroutines ..
266  EXTERNAL caxpy, ccopy, cgemm, chpmv, chpr, chpr2,
267  \$ clacpy, claset, cupmtr
268 * ..
269 * .. Intrinsic Functions ..
270  INTRINSIC cmplx, max, min, real
271 * ..
272 * .. Executable Statements ..
273 *
274 * Constants
275 *
276  result( 1 ) = zero
277  IF( itype.EQ.1 )
278  \$ result( 2 ) = zero
279  IF( n.LE.0 )
280  \$ RETURN
281 *
282  lap = ( n*( n+1 ) ) / 2
283 *
284  IF( lsame( uplo, 'U' ) ) THEN
285  lower = .false.
286  cuplo = 'U'
287  ELSE
288  lower = .true.
289  cuplo = 'L'
290  END IF
291 *
292  unfl = slamch( 'Safe minimum' )
293  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
294 *
295 * Some Error Checks
296 *
297  IF( itype.LT.1 .OR. itype.GT.3 ) THEN
298  result( 1 ) = ten / ulp
299  RETURN
300  END IF
301 *
302 * Do Test 1
303 *
304 * Norm of A:
305 *
306  IF( itype.EQ.3 ) THEN
307  anorm = one
308  ELSE
309  anorm = max( clanhp( '1', cuplo, n, ap, rwork ), unfl )
310  END IF
311 *
312 * Compute error matrix:
313 *
314  IF( itype.EQ.1 ) THEN
315 *
316 * ITYPE=1: error = A - U S U*
317 *
318  CALL claset( 'Full', n, n, czero, czero, work, n )
319  CALL ccopy( lap, ap, 1, work, 1 )
320 *
321  DO 10 j = 1, n
322  CALL chpr( cuplo, n, -d( j ), u( 1, j ), 1, work )
323  10 CONTINUE
324 *
325  IF( n.GT.1 .AND. kband.EQ.1 ) THEN
326  DO 20 j = 1, n - 1
327  CALL chpr2( cuplo, n, -cmplx( e( j ) ), u( 1, j ), 1,
328  \$ u( 1, j-1 ), 1, work )
329  20 CONTINUE
330  END IF
331  wnorm = clanhp( '1', cuplo, n, work, rwork )
332 *
333  ELSE IF( itype.EQ.2 ) THEN
334 *
335 * ITYPE=2: error = V S V* - A
336 *
337  CALL claset( 'Full', n, n, czero, czero, work, n )
338 *
339  IF( lower ) THEN
340  work( lap ) = d( n )
341  DO 40 j = n - 1, 1, -1
342  jp = ( ( 2*n-j )*( j-1 ) ) / 2
343  jp1 = jp + n - j
344  IF( kband.EQ.1 ) THEN
345  work( jp+j+1 ) = ( cone-tau( j ) )*e( j )
346  DO 30 jr = j + 2, n
347  work( jp+jr ) = -tau( j )*e( j )*vp( jp+jr )
348  30 CONTINUE
349  END IF
350 *
351  IF( tau( j ).NE.czero ) THEN
352  vsave = vp( jp+j+1 )
353  vp( jp+j+1 ) = cone
354  CALL chpmv( 'L', n-j, cone, work( jp1+j+1 ),
355  \$ vp( jp+j+1 ), 1, czero, work( lap+1 ), 1 )
356  temp = -half*tau( j )*cdotc( n-j, work( lap+1 ), 1,
357  \$ vp( jp+j+1 ), 1 )
358  CALL caxpy( n-j, temp, vp( jp+j+1 ), 1, work( lap+1 ),
359  \$ 1 )
360  CALL chpr2( 'L', n-j, -tau( j ), vp( jp+j+1 ), 1,
361  \$ work( lap+1 ), 1, work( jp1+j+1 ) )
362 *
363  vp( jp+j+1 ) = vsave
364  END IF
365  work( jp+j ) = d( j )
366  40 CONTINUE
367  ELSE
368  work( 1 ) = d( 1 )
369  DO 60 j = 1, n - 1
370  jp = ( j*( j-1 ) ) / 2
371  jp1 = jp + j
372  IF( kband.EQ.1 ) THEN
373  work( jp1+j ) = ( cone-tau( j ) )*e( j )
374  DO 50 jr = 1, j - 1
375  work( jp1+jr ) = -tau( j )*e( j )*vp( jp1+jr )
376  50 CONTINUE
377  END IF
378 *
379  IF( tau( j ).NE.czero ) THEN
380  vsave = vp( jp1+j )
381  vp( jp1+j ) = cone
382  CALL chpmv( 'U', j, cone, work, vp( jp1+1 ), 1, czero,
383  \$ work( lap+1 ), 1 )
384  temp = -half*tau( j )*cdotc( j, work( lap+1 ), 1,
385  \$ vp( jp1+1 ), 1 )
386  CALL caxpy( j, temp, vp( jp1+1 ), 1, work( lap+1 ),
387  \$ 1 )
388  CALL chpr2( 'U', j, -tau( j ), vp( jp1+1 ), 1,
389  \$ work( lap+1 ), 1, work )
390  vp( jp1+j ) = vsave
391  END IF
392  work( jp1+j+1 ) = d( j+1 )
393  60 CONTINUE
394  END IF
395 *
396  DO 70 j = 1, lap
397  work( j ) = work( j ) - ap( j )
398  70 CONTINUE
399  wnorm = clanhp( '1', cuplo, n, work, rwork )
400 *
401  ELSE IF( itype.EQ.3 ) THEN
402 *
403 * ITYPE=3: error = U V* - I
404 *
405  IF( n.LT.2 )
406  \$ RETURN
407  CALL clacpy( ' ', n, n, u, ldu, work, n )
408  CALL cupmtr( 'R', cuplo, 'C', n, n, vp, tau, work, n,
409  \$ work( n**2+1 ), iinfo )
410  IF( iinfo.NE.0 ) THEN
411  result( 1 ) = ten / ulp
412  RETURN
413  END IF
414 *
415  DO 80 j = 1, n
416  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - cone
417  80 CONTINUE
418 *
419  wnorm = clange( '1', n, n, work, n, rwork )
420  END IF
421 *
422  IF( anorm.GT.wnorm ) THEN
423  result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
424  ELSE
425  IF( anorm.LT.one ) THEN
426  result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
427  ELSE
428  result( 1 ) = min( wnorm / anorm, REAL( N ) ) / ( n*ulp )
429  END IF
430  END IF
431 *
432 * Do Test 2
433 *
434 * Compute UU* - I
435 *
436  IF( itype.EQ.1 ) THEN
437  CALL cgemm( 'N', 'C', n, n, n, cone, u, ldu, u, ldu, czero,
438  \$ work, n )
439 *
440  DO 90 j = 1, n
441  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - cone
442  90 CONTINUE
443 *
444  result( 2 ) = min( clange( '1', n, n, work, n, rwork ),
445  \$ REAL( N ) ) / ( n*ulp )
446  END IF
447 *
448  RETURN
449 *
450 * End of CHPT21
451 *
subroutine chpmv(UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
CHPMV
Definition: chpmv.f:151
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:117
subroutine chpr(UPLO, N, ALPHA, X, INCX, AP)
CHPR
Definition: chpr.f:132
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: claset.f:108
complex function cdotc(N, CX, INCX, CY, INCY)
CDOTC
Definition: cdotc.f:54
subroutine chpr2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHPR2
Definition: chpr2.f:147
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:52
real function clanhp(NORM, UPLO, N, AP, WORK)
CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
Definition: clanhp.f:119
subroutine cupmtr(SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
CUPMTR
Definition: cupmtr.f:152
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:53
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: