LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zlahilb ( integer  N,
integer  NRHS,
complex*16, dimension(lda,n)  A,
integer  LDA,
complex*16, dimension(ldx, nrhs)  X,
integer  LDX,
complex*16, dimension(ldb, nrhs)  B,
integer  LDB,
double precision, dimension(n)  WORK,
integer  INFO,
character*3  PATH 
)

ZLAHILB

Purpose:
 ZLAHILB generates an N by N scaled Hilbert matrix in A along with
 NRHS right-hand sides in B and solutions in X such that A*X=B.

 The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all
 entries are integers.  The right-hand sides are the first NRHS
 columns of M * the identity matrix, and the solutions are the
 first NRHS columns of the inverse Hilbert matrix.

 The condition number of the Hilbert matrix grows exponentially with
 its size, roughly as O(e ** (3.5*N)).  Additionally, the inverse
 Hilbert matrices beyond a relatively small dimension cannot be
 generated exactly without extra precision.  Precision is exhausted
 when the largest entry in the inverse Hilbert matrix is greater than
 2 to the power of the number of bits in the fraction of the data type
 used plus one, which is 24 for single precision.

 In single, the generated solution is exact for N <= 6 and has
 small componentwise error for 7 <= N <= 11.
Parameters
[in]N
          N is INTEGER
          The dimension of the matrix A.
[in]NRHS
          NRHS is INTEGER
          The requested number of right-hand sides.
[out]A
          A is COMPLEX array, dimension (LDA, N)
          The generated scaled Hilbert matrix.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= N.
[out]X
          X is COMPLEX array, dimension (LDX, NRHS)
          The generated exact solutions.  Currently, the first NRHS
          columns of the inverse Hilbert matrix.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= N.
[out]B
          B is REAL array, dimension (LDB, NRHS)
          The generated right-hand sides.  Currently, the first NRHS
          columns of LCM(1, 2, ..., 2*N-1) * the identity matrix.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= N.
[out]WORK
          WORK is REAL array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          = 1: N is too large; the data is still generated but may not
               be not exact.
          < 0: if INFO = -i, the i-th argument had an illegal value
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2015

Definition at line 136 of file zlahilb.f.

136 *
137 * -- LAPACK test routine (version 3.6.0) --
138 * -- LAPACK is a software package provided by Univ. of Tennessee, --
139 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140 * November 2015
141 *
142 * .. Scalar Arguments ..
143  INTEGER n, nrhs, lda, ldx, ldb, info
144 * .. Array Arguments ..
145  DOUBLE PRECISION work(n)
146  COMPLEX*16 a(lda,n), x(ldx, nrhs), b(ldb, nrhs)
147  CHARACTER*3 path
148 * ..
149 *
150 * =====================================================================
151 * .. Local Scalars ..
152  INTEGER tm, ti, r
153  INTEGER m
154  INTEGER i, j
155  COMPLEX*16 tmp
156  CHARACTER*2 c2
157 
158 * .. Parameters ..
159 * NMAX_EXACT the largest dimension where the generated data is
160 * exact.
161 * NMAX_APPROX the largest dimension where the generated data has
162 * a small componentwise relative error.
163 * ??? complex uses how many bits ???
164  INTEGER nmax_exact, nmax_approx, size_d
165  parameter(nmax_exact = 6, nmax_approx = 11, size_d = 8)
166 
167 * d's are generated from random permuation of those eight elements.
168  COMPLEX*16 d1(8), d2(8), invd1(8), invd2(8)
169  DATA d1 /(-1,0),(0,1),(-1,-1),(0,-1),(1,0),(-1,1),(1,1),(1,-1)/
170  DATA d2 /(-1,0),(0,-1),(-1,1),(0,1),(1,0),(-1,-1),(1,-1),(1,1)/
171 
172  DATA invd1 /(-1,0),(0,-1),(-.5,.5),(0,1),(1,0),
173  $ (-.5,-.5),(.5,-.5),(.5,.5)/
174  DATA invd2 /(-1,0),(0,1),(-.5,-.5),(0,-1),(1,0),
175  $ (-.5,.5),(.5,.5),(.5,-.5)/
176 * ..
177 * .. External Functions
178  EXTERNAL zlaset, lsamen
179  INTRINSIC dble
180  LOGICAL lsamen
181 * ..
182 * .. Executable Statements ..
183  c2 = path( 2: 3 )
184 *
185 * Test the input arguments
186 *
187  info = 0
188  IF (n .LT. 0 .OR. n .GT. nmax_approx) THEN
189  info = -1
190  ELSE IF (nrhs .LT. 0) THEN
191  info = -2
192  ELSE IF (lda .LT. n) THEN
193  info = -4
194  ELSE IF (ldx .LT. n) THEN
195  info = -6
196  ELSE IF (ldb .LT. n) THEN
197  info = -8
198  END IF
199  IF (info .LT. 0) THEN
200  CALL xerbla('ZLAHILB', -info)
201  RETURN
202  END IF
203  IF (n .GT. nmax_exact) THEN
204  info = 1
205  END IF
206 
207 * Compute M = the LCM of the integers [1, 2*N-1]. The largest
208 * reasonable N is small enough that integers suffice (up to N = 11).
209  m = 1
210  DO i = 2, (2*n-1)
211  tm = m
212  ti = i
213  r = mod(tm, ti)
214  DO WHILE (r .NE. 0)
215  tm = ti
216  ti = r
217  r = mod(tm, ti)
218  END DO
219  m = (m / ti) * i
220  END DO
221 
222 * Generate the scaled Hilbert matrix in A
223 * If we are testing SY routines,
224 * take D1_i = D2_i, else, D1_i = D2_i*
225  IF ( lsamen( 2, c2, 'SY' ) ) THEN
226  DO j = 1, n
227  DO i = 1, n
228  a(i, j) = d1(mod(j,size_d)+1) * (dble(m) / (i + j - 1))
229  $ * d1(mod(i,size_d)+1)
230  END DO
231  END DO
232  ELSE
233  DO j = 1, n
234  DO i = 1, n
235  a(i, j) = d1(mod(j,size_d)+1) * (dble(m) / (i + j - 1))
236  $ * d2(mod(i,size_d)+1)
237  END DO
238  END DO
239  END IF
240 
241 * Generate matrix B as simply the first NRHS columns of M * the
242 * identity.
243  tmp = dble(m)
244  CALL zlaset('Full', n, nrhs, (0.0d+0,0.0d+0), tmp, b, ldb)
245 
246 * Generate the true solutions in X. Because B = the first NRHS
247 * columns of M*I, the true solutions are just the first NRHS columns
248 * of the inverse Hilbert matrix.
249  work(1) = n
250  DO j = 2, n
251  work(j) = ( ( (work(j-1)/(j-1)) * (j-1 - n) ) /(j-1) )
252  $ * (n +j -1)
253  END DO
254 
255 * If we are testing SY routines,
256 * take D1_i = D2_i, else, D1_i = D2_i*
257  IF ( lsamen( 2, c2, 'SY' ) ) THEN
258  DO j = 1, nrhs
259  DO i = 1, n
260  x(i, j) = invd1(mod(j,size_d)+1) *
261  $ ((work(i)*work(j)) / (i + j - 1))
262  $ * invd1(mod(i,size_d)+1)
263  END DO
264  END DO
265  ELSE
266  DO j = 1, nrhs
267  DO i = 1, n
268  x(i, j) = invd2(mod(j,size_d)+1) *
269  $ ((work(i)*work(j)) / (i + j - 1))
270  $ * invd1(mod(i,size_d)+1)
271  END DO
272  END DO
273  END IF
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: zlaset.f:108
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62

Here is the call graph for this function: