129 SUBROUTINE sorgql( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
137 INTEGER INFO, K, LDA, LWORK, M, N
140 REAL A( lda, * ), TAU( * ), WORK( * )
147 parameter ( zero = 0.0e+0 )
151 INTEGER I, IB, IINFO, IWS, J, KK, L, LDWORK, LWKOPT,
169 lquery = ( lwork.EQ.-1 )
172 ELSE IF( n.LT.0 .OR. n.GT.m )
THEN
174 ELSE IF( k.LT.0 .OR. k.GT.n )
THEN
176 ELSE IF( lda.LT.max( 1, m ) )
THEN
184 nb = ilaenv( 1,
'SORGQL',
' ', m, n, k, -1 )
189 IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery )
THEN
195 CALL xerbla(
'SORGQL', -info )
197 ELSE IF( lquery )
THEN
210 IF( nb.GT.1 .AND. nb.LT.k )
THEN
214 nx = max( 0, ilaenv( 3,
'SORGQL',
' ', m, n, k, -1 ) )
221 IF( lwork.LT.iws )
THEN
227 nbmin = max( 2, ilaenv( 2,
'SORGQL',
' ', m, n, k, -1 ) )
232 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
237 kk = min( k, ( ( k-nx+nb-1 ) / nb )*nb )
242 DO 10 i = m - kk + 1, m
252 CALL sorg2l( m-kk, n-kk, k-kk, a, lda, tau, work, iinfo )
258 DO 50 i = k - kk + 1, k, nb
259 ib = min( nb, k-i+1 )
260 IF( n-k+i.GT.1 )
THEN
265 CALL slarft(
'Backward',
'Columnwise', m-k+i+ib-1, ib,
266 $ a( 1, n-k+i ), lda, tau( i ), work, ldwork )
270 CALL slarfb(
'Left',
'No transpose',
'Backward',
271 $
'Columnwise', m-k+i+ib-1, n-k+i-1, ib,
272 $ a( 1, n-k+i ), lda, work, ldwork, a, lda,
273 $ work( ib+1 ), ldwork )
278 CALL sorg2l( m-k+i+ib-1, ib, ib, a( 1, n-k+i ), lda,
279 $ tau( i ), work, iinfo )
283 DO 40 j = n - k + i, n - k + i + ib - 1
284 DO 30 l = m - k + i + ib, m
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine slarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine slarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
subroutine sorgql(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
SORGQL
subroutine sorg2l(M, N, K, A, LDA, TAU, WORK, INFO)
SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf ...