LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
lapacke_zggev_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function zggev
30 * Author: Intel Corporation
31 * Generated November 2015
32 *****************************************************************************/
33 
34 #include "lapacke_utils.h"
35 
36 lapack_int LAPACKE_zggev_work( int matrix_layout, char jobvl, char jobvr,
43  lapack_complex_double* work, lapack_int lwork,
44  double* rwork )
45 {
46  lapack_int info = 0;
47  if( matrix_layout == LAPACK_COL_MAJOR ) {
48  /* Call LAPACK function and adjust info */
49  LAPACK_zggev( &jobvl, &jobvr, &n, a, &lda, b, &ldb, alpha, beta, vl,
50  &ldvl, vr, &ldvr, work, &lwork, rwork, &info );
51  if( info < 0 ) {
52  info = info - 1;
53  }
54  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
55  lapack_int nrows_vl = LAPACKE_lsame( jobvl, 'v' ) ? n : 1;
56  lapack_int ncols_vl = LAPACKE_lsame( jobvl, 'v' ) ? n : 1;
57  lapack_int nrows_vr = LAPACKE_lsame( jobvr, 'v' ) ? n : 1;
58  lapack_int ncols_vr = LAPACKE_lsame( jobvr, 'v' ) ? n : 1;
59  lapack_int lda_t = MAX(1,n);
60  lapack_int ldb_t = MAX(1,n);
61  lapack_int ldvl_t = MAX(1,nrows_vl);
62  lapack_int ldvr_t = MAX(1,nrows_vr);
63  lapack_complex_double* a_t = NULL;
64  lapack_complex_double* b_t = NULL;
65  lapack_complex_double* vl_t = NULL;
66  lapack_complex_double* vr_t = NULL;
67  /* Check leading dimension(s) */
68  if( lda < n ) {
69  info = -6;
70  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
71  return info;
72  }
73  if( ldb < n ) {
74  info = -8;
75  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
76  return info;
77  }
78  if( ldvl < ncols_vl ) {
79  info = -12;
80  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
81  return info;
82  }
83  if( ldvr < ncols_vr ) {
84  info = -14;
85  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
86  return info;
87  }
88  /* Query optimal working array(s) size if requested */
89  if( lwork == -1 ) {
90  LAPACK_zggev( &jobvl, &jobvr, &n, a, &lda_t, b, &ldb_t, alpha, beta,
91  vl, &ldvl_t, vr, &ldvr_t, work, &lwork, rwork,
92  &info );
93  return (info < 0) ? (info - 1) : info;
94  }
95  /* Allocate memory for temporary array(s) */
96  a_t = (lapack_complex_double*)
97  LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
98  if( a_t == NULL ) {
100  goto exit_level_0;
101  }
102  b_t = (lapack_complex_double*)
103  LAPACKE_malloc( sizeof(lapack_complex_double) * ldb_t * MAX(1,n) );
104  if( b_t == NULL ) {
106  goto exit_level_1;
107  }
108  if( LAPACKE_lsame( jobvl, 'v' ) ) {
109  vl_t = (lapack_complex_double*)
111  ldvl_t * MAX(1,ncols_vl) );
112  if( vl_t == NULL ) {
114  goto exit_level_2;
115  }
116  }
117  if( LAPACKE_lsame( jobvr, 'v' ) ) {
118  vr_t = (lapack_complex_double*)
120  ldvr_t * MAX(1,ncols_vr) );
121  if( vr_t == NULL ) {
123  goto exit_level_3;
124  }
125  }
126  /* Transpose input matrices */
127  LAPACKE_zge_trans( matrix_layout, n, n, a, lda, a_t, lda_t );
128  LAPACKE_zge_trans( matrix_layout, n, n, b, ldb, b_t, ldb_t );
129  /* Call LAPACK function and adjust info */
130  LAPACK_zggev( &jobvl, &jobvr, &n, a_t, &lda_t, b_t, &ldb_t, alpha, beta,
131  vl_t, &ldvl_t, vr_t, &ldvr_t, work, &lwork, rwork,
132  &info );
133  if( info < 0 ) {
134  info = info - 1;
135  }
136  /* Transpose output matrices */
137  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, a_t, lda_t, a, lda );
138  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, b_t, ldb_t, b, ldb );
139  if( LAPACKE_lsame( jobvl, 'v' ) ) {
140  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_vl, ncols_vl, vl_t,
141  ldvl_t, vl, ldvl );
142  }
143  if( LAPACKE_lsame( jobvr, 'v' ) ) {
144  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_vr, ncols_vr, vr_t,
145  ldvr_t, vr, ldvr );
146  }
147  /* Release memory and exit */
148  if( LAPACKE_lsame( jobvr, 'v' ) ) {
149  LAPACKE_free( vr_t );
150  }
151 exit_level_3:
152  if( LAPACKE_lsame( jobvl, 'v' ) ) {
153  LAPACKE_free( vl_t );
154  }
155 exit_level_2:
156  LAPACKE_free( b_t );
157 exit_level_1:
158  LAPACKE_free( a_t );
159 exit_level_0:
160  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
161  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
162  }
163  } else {
164  info = -1;
165  LAPACKE_xerbla( "LAPACKE_zggev_work", info );
166  }
167  return info;
168 }
void LAPACK_zggev(char *jobvl, char *jobvr, lapack_int *n, lapack_complex_double *a, lapack_int *lda, lapack_complex_double *b, lapack_int *ldb, lapack_complex_double *alpha, lapack_complex_double *beta, lapack_complex_double *vl, lapack_int *ldvl, lapack_complex_double *vr, lapack_int *ldvr, lapack_complex_double *work, lapack_int *lwork, double *rwork, lapack_int *info)
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
#define lapack_complex_double
Definition: lapacke.h:90
#define MAX(x, y)
Definition: lapacke_utils.h:47
#define LAPACKE_free(p)
Definition: lapacke.h:113
#define LAPACKE_malloc(size)
Definition: lapacke.h:110
lapack_int LAPACKE_zggev_work(int matrix_layout, char jobvl, char jobvr, lapack_int n, lapack_complex_double *a, lapack_int lda, lapack_complex_double *b, lapack_int ldb, lapack_complex_double *alpha, lapack_complex_double *beta, lapack_complex_double *vl, lapack_int ldvl, lapack_complex_double *vr, lapack_int ldvr, lapack_complex_double *work, lapack_int lwork, double *rwork)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:123
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)