LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cerrqrtp ( character*3  PATH,
integer  NUNIT 
)

CERRQRTP

Purpose:
 CERRQRTP tests the error exits for the REAL routines
 that use the QRT decomposition of a triangular-pentagonal matrix.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 57 of file cerrqrtp.f.

57  IMPLICIT NONE
58 *
59 * -- LAPACK test routine (version 3.4.0) --
60 * -- LAPACK is a software package provided by Univ. of Tennessee, --
61 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62 * November 2011
63 *
64 * .. Scalar Arguments ..
65  CHARACTER*3 path
66  INTEGER nunit
67 * ..
68 *
69 * =====================================================================
70 *
71 * .. Parameters ..
72  INTEGER nmax
73  parameter ( nmax = 2 )
74 * ..
75 * .. Local Scalars ..
76  INTEGER i, info, j
77 * ..
78 * .. Local Arrays ..
79  COMPLEX a( nmax, nmax ), t( nmax, nmax ), w( nmax ),
80  $ b( nmax, nmax ), c( nmax, nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, ctpqrt2, ctpqrt,
84  $ ctpmqrt
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL lerr, ok
88  CHARACTER*32 srnamt
89  INTEGER infot, nout
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC float, cmplx
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO j = 1, nmax
106  DO i = 1, nmax
107  a( i, j ) = 1.0 / cmplx(float( i+j ),0.0)
108  c( i, j ) = 1.0 / cmplx(float( i+j ),0.0)
109  t( i, j ) = 1.0 / cmplx(float( i+j ),0.0)
110  END DO
111  w( j ) = cmplx(0.0,0.0)
112  END DO
113  ok = .true.
114 *
115 * Error exits for TPQRT factorization
116 *
117 * CTPQRT
118 *
119  srnamt = 'CTPQRT'
120  infot = 1
121  CALL ctpqrt( -1, 1, 0, 1, a, 1, b, 1, t, 1, w, info )
122  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
123  infot = 2
124  CALL ctpqrt( 1, -1, 0, 1, a, 1, b, 1, t, 1, w, info )
125  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
126  infot = 3
127  CALL ctpqrt( 0, 1, -1, 1, a, 1, b, 1, t, 1, w, info )
128  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
129  infot = 3
130  CALL ctpqrt( 0, 1, 1, 1, a, 1, b, 1, t, 1, w, info )
131  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
132  infot = 4
133  CALL ctpqrt( 0, 1, 0, 0, a, 1, b, 1, t, 1, w, info )
134  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
135  infot = 4
136  CALL ctpqrt( 0, 1, 0, 2, a, 1, b, 1, t, 1, w, info )
137  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
138  infot = 6
139  CALL ctpqrt( 1, 2, 0, 2, a, 1, b, 1, t, 1, w, info )
140  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
141  infot = 8
142  CALL ctpqrt( 2, 1, 0, 1, a, 1, b, 1, t, 1, w, info )
143  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
144  infot = 10
145  CALL ctpqrt( 2, 2, 1, 2, a, 2, b, 2, t, 1, w, info )
146  CALL chkxer( 'CTPQRT', infot, nout, lerr, ok )
147 *
148 * CTPQRT2
149 *
150  srnamt = 'CTPQRT2'
151  infot = 1
152  CALL ctpqrt2( -1, 0, 0, a, 1, b, 1, t, 1, info )
153  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
154  infot = 2
155  CALL ctpqrt2( 0, -1, 0, a, 1, b, 1, t, 1, info )
156  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
157  infot = 3
158  CALL ctpqrt2( 0, 0, -1, a, 1, b, 1, t, 1, info )
159  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
160  infot = 5
161  CALL ctpqrt2( 2, 2, 0, a, 1, b, 2, t, 2, info )
162  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
163  infot = 7
164  CALL ctpqrt2( 2, 2, 0, a, 2, b, 1, t, 2, info )
165  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
166  infot = 9
167  CALL ctpqrt2( 2, 2, 0, a, 2, b, 2, t, 1, info )
168  CALL chkxer( 'CTPQRT2', infot, nout, lerr, ok )
169 *
170 * CTPMQRT
171 *
172  srnamt = 'CTPMQRT'
173  infot = 1
174  CALL ctpmqrt( '/', 'N', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
175  $ w, info )
176  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
177  infot = 2
178  CALL ctpmqrt( 'L', '/', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
179  $ w, info )
180  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
181  infot = 3
182  CALL ctpmqrt( 'L', 'N', -1, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
183  $ w, info )
184  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
185  infot = 4
186  CALL ctpmqrt( 'L', 'N', 0, -1, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
187  $ w, info )
188  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
189  infot = 5
190  CALL ctpmqrt( 'L', 'N', 0, 0, -1, 0, 1, a, 1, t, 1, b, 1, c, 1,
191  $ w, info )
192  infot = 6
193  CALL ctpmqrt( 'L', 'N', 0, 0, 0, -1, 1, a, 1, t, 1, b, 1, c, 1,
194  $ w, info )
195  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
196  infot = 7
197  CALL ctpmqrt( 'L', 'N', 0, 0, 0, 0, 0, a, 1, t, 1, b, 1, c, 1,
198  $ w, info )
199  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
200  infot = 9
201  CALL ctpmqrt( 'R', 'N', 1, 2, 1, 1, 1, a, 1, t, 1, b, 1, c, 1,
202  $ w, info )
203  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
204  infot = 9
205  CALL ctpmqrt( 'L', 'N', 2, 1, 1, 1, 1, a, 1, t, 1, b, 1, c, 1,
206  $ w, info )
207  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
208  infot = 11
209  CALL ctpmqrt( 'R', 'N', 1, 1, 1, 1, 1, a, 1, t, 0, b, 1, c, 1,
210  $ w, info )
211  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
212  infot = 13
213  CALL ctpmqrt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 0, c, 1,
214  $ w, info )
215  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
216  infot = 15
217  CALL ctpmqrt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 1, c, 0,
218  $ w, info )
219  CALL chkxer( 'CTPMQRT', infot, nout, lerr, ok )
220 *
221 * Print a summary line.
222 *
223  CALL alaesm( path, ok, nout )
224 *
225  RETURN
226 *
227 * End of CERRQRT
228 *
subroutine ctpqrt2(M, N, L, A, LDA, B, LDB, T, LDT, INFO)
CTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Definition: ctpqrt2.f:175
subroutine ctpqrt(M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)
CTPQRT
Definition: ctpqrt.f:191
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine ctpmqrt(SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, A, LDA, B, LDB, WORK, INFO)
CTPMQRT
Definition: ctpmqrt.f:218
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199

Here is the call graph for this function:

Here is the caller graph for this function: