LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine dpptri ( character  UPLO,
integer  N,
double precision, dimension( * )  AP,
integer  INFO 
)

DPPTRI

Download DPPTRI + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DPPTRI computes the inverse of a real symmetric positive definite
 matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
 computed by DPPTRF.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular factor is stored in AP;
          = 'L':  Lower triangular factor is stored in AP.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]AP
          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the triangular factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T, packed columnwise as
          a linear array.  The j-th column of U or L is stored in the
          array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.

          On exit, the upper or lower triangle of the (symmetric)
          inverse of A, overwriting the input factor U or L.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the (i,i) element of the factor U or L is
                zero, and the inverse could not be computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 95 of file dpptri.f.

95 *
96 * -- LAPACK computational routine (version 3.4.0) --
97 * -- LAPACK is a software package provided by Univ. of Tennessee, --
98 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
99 * November 2011
100 *
101 * .. Scalar Arguments ..
102  CHARACTER uplo
103  INTEGER info, n
104 * ..
105 * .. Array Arguments ..
106  DOUBLE PRECISION ap( * )
107 * ..
108 *
109 * =====================================================================
110 *
111 * .. Parameters ..
112  DOUBLE PRECISION one
113  parameter ( one = 1.0d+0 )
114 * ..
115 * .. Local Scalars ..
116  LOGICAL upper
117  INTEGER j, jc, jj, jjn
118  DOUBLE PRECISION ajj
119 * ..
120 * .. External Functions ..
121  LOGICAL lsame
122  DOUBLE PRECISION ddot
123  EXTERNAL lsame, ddot
124 * ..
125 * .. External Subroutines ..
126  EXTERNAL dscal, dspr, dtpmv, dtptri, xerbla
127 * ..
128 * .. Executable Statements ..
129 *
130 * Test the input parameters.
131 *
132  info = 0
133  upper = lsame( uplo, 'U' )
134  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
135  info = -1
136  ELSE IF( n.LT.0 ) THEN
137  info = -2
138  END IF
139  IF( info.NE.0 ) THEN
140  CALL xerbla( 'DPPTRI', -info )
141  RETURN
142  END IF
143 *
144 * Quick return if possible
145 *
146  IF( n.EQ.0 )
147  $ RETURN
148 *
149 * Invert the triangular Cholesky factor U or L.
150 *
151  CALL dtptri( uplo, 'Non-unit', n, ap, info )
152  IF( info.GT.0 )
153  $ RETURN
154 *
155  IF( upper ) THEN
156 *
157 * Compute the product inv(U) * inv(U)**T.
158 *
159  jj = 0
160  DO 10 j = 1, n
161  jc = jj + 1
162  jj = jj + j
163  IF( j.GT.1 )
164  $ CALL dspr( 'Upper', j-1, one, ap( jc ), 1, ap )
165  ajj = ap( jj )
166  CALL dscal( j, ajj, ap( jc ), 1 )
167  10 CONTINUE
168 *
169  ELSE
170 *
171 * Compute the product inv(L)**T * inv(L).
172 *
173  jj = 1
174  DO 20 j = 1, n
175  jjn = jj + n - j + 1
176  ap( jj ) = ddot( n-j+1, ap( jj ), 1, ap( jj ), 1 )
177  IF( j.LT.n )
178  $ CALL dtpmv( 'Lower', 'Transpose', 'Non-unit', n-j,
179  $ ap( jjn ), ap( jj+1 ), 1 )
180  jj = jjn
181  20 CONTINUE
182  END IF
183 *
184  RETURN
185 *
186 * End of DPPTRI
187 *
double precision function ddot(N, DX, INCX, DY, INCY)
DDOT
Definition: ddot.f:53
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine dscal(N, DA, DX, INCX)
DSCAL
Definition: dscal.f:55
subroutine dspr(UPLO, N, ALPHA, X, INCX, AP)
DSPR
Definition: dspr.f:129
subroutine dtptri(UPLO, DIAG, N, AP, INFO)
DTPTRI
Definition: dtptri.f:119
subroutine dtpmv(UPLO, TRANS, DIAG, N, AP, X, INCX)
DTPMV
Definition: dtpmv.f:144
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: