LAPACK
3.6.1
LAPACK: Linear Algebra PACKage
|
subroutine dtptri | ( | character | UPLO, |
character | DIAG, | ||
integer | N, | ||
double precision, dimension( * ) | AP, | ||
integer | INFO | ||
) |
DTPTRI
Download DTPTRI + dependencies [TGZ] [ZIP] [TXT]
DTPTRI computes the inverse of a real upper or lower triangular matrix A stored in packed format.
[in] | UPLO | UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. |
[in] | DIAG | DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. |
[in] | N | N is INTEGER The order of the matrix A. N >= 0. |
[in,out] | AP | AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangular matrix A, stored columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, the (triangular) inverse of the original matrix, in the same packed storage format. |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed. |
A triangular matrix A can be transferred to packed storage using one of the following program segments: UPLO = 'U': UPLO = 'L': JC = 1 JC = 1 DO 2 J = 1, N DO 2 J = 1, N DO 1 I = 1, J DO 1 I = J, N AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) 1 CONTINUE 1 CONTINUE JC = JC + J JC = JC + N - J + 1 2 CONTINUE 2 CONTINUE
Definition at line 119 of file dtptri.f.