LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
zlantr.f
Go to the documentation of this file.
1 *> \brief \b ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZLANTR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantr.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantr.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantr.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
22 * WORK )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER DIAG, NORM, UPLO
26 * INTEGER LDA, M, N
27 * ..
28 * .. Array Arguments ..
29 * DOUBLE PRECISION WORK( * )
30 * COMPLEX*16 A( LDA, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> ZLANTR returns the value of the one norm, or the Frobenius norm, or
40 *> the infinity norm, or the element of largest absolute value of a
41 *> trapezoidal or triangular matrix A.
42 *> \endverbatim
43 *>
44 *> \return ZLANTR
45 *> \verbatim
46 *>
47 *> ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
48 *> (
49 *> ( norm1(A), NORM = '1', 'O' or 'o'
50 *> (
51 *> ( normI(A), NORM = 'I' or 'i'
52 *> (
53 *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
54 *>
55 *> where norm1 denotes the one norm of a matrix (maximum column sum),
56 *> normI denotes the infinity norm of a matrix (maximum row sum) and
57 *> normF denotes the Frobenius norm of a matrix (square root of sum of
58 *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
59 *> \endverbatim
60 *
61 * Arguments:
62 * ==========
63 *
64 *> \param[in] NORM
65 *> \verbatim
66 *> NORM is CHARACTER*1
67 *> Specifies the value to be returned in ZLANTR as described
68 *> above.
69 *> \endverbatim
70 *>
71 *> \param[in] UPLO
72 *> \verbatim
73 *> UPLO is CHARACTER*1
74 *> Specifies whether the matrix A is upper or lower trapezoidal.
75 *> = 'U': Upper trapezoidal
76 *> = 'L': Lower trapezoidal
77 *> Note that A is triangular instead of trapezoidal if M = N.
78 *> \endverbatim
79 *>
80 *> \param[in] DIAG
81 *> \verbatim
82 *> DIAG is CHARACTER*1
83 *> Specifies whether or not the matrix A has unit diagonal.
84 *> = 'N': Non-unit diagonal
85 *> = 'U': Unit diagonal
86 *> \endverbatim
87 *>
88 *> \param[in] M
89 *> \verbatim
90 *> M is INTEGER
91 *> The number of rows of the matrix A. M >= 0, and if
92 *> UPLO = 'U', M <= N. When M = 0, ZLANTR is set to zero.
93 *> \endverbatim
94 *>
95 *> \param[in] N
96 *> \verbatim
97 *> N is INTEGER
98 *> The number of columns of the matrix A. N >= 0, and if
99 *> UPLO = 'L', N <= M. When N = 0, ZLANTR is set to zero.
100 *> \endverbatim
101 *>
102 *> \param[in] A
103 *> \verbatim
104 *> A is COMPLEX*16 array, dimension (LDA,N)
105 *> The trapezoidal matrix A (A is triangular if M = N).
106 *> If UPLO = 'U', the leading m by n upper trapezoidal part of
107 *> the array A contains the upper trapezoidal matrix, and the
108 *> strictly lower triangular part of A is not referenced.
109 *> If UPLO = 'L', the leading m by n lower trapezoidal part of
110 *> the array A contains the lower trapezoidal matrix, and the
111 *> strictly upper triangular part of A is not referenced. Note
112 *> that when DIAG = 'U', the diagonal elements of A are not
113 *> referenced and are assumed to be one.
114 *> \endverbatim
115 *>
116 *> \param[in] LDA
117 *> \verbatim
118 *> LDA is INTEGER
119 *> The leading dimension of the array A. LDA >= max(M,1).
120 *> \endverbatim
121 *>
122 *> \param[out] WORK
123 *> \verbatim
124 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
125 *> where LWORK >= M when NORM = 'I'; otherwise, WORK is not
126 *> referenced.
127 *> \endverbatim
128 *
129 * Authors:
130 * ========
131 *
132 *> \author Univ. of Tennessee
133 *> \author Univ. of California Berkeley
134 *> \author Univ. of Colorado Denver
135 *> \author NAG Ltd.
136 *
137 *> \date September 2012
138 *
139 *> \ingroup complex16OTHERauxiliary
140 *
141 * =====================================================================
142  DOUBLE PRECISION FUNCTION zlantr( NORM, UPLO, DIAG, M, N, A, LDA,
143  $ work )
144 *
145 * -- LAPACK auxiliary routine (version 3.4.2) --
146 * -- LAPACK is a software package provided by Univ. of Tennessee, --
147 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148 * September 2012
149 *
150 * .. Scalar Arguments ..
151  CHARACTER DIAG, NORM, UPLO
152  INTEGER LDA, M, N
153 * ..
154 * .. Array Arguments ..
155  DOUBLE PRECISION WORK( * )
156  COMPLEX*16 A( lda, * )
157 * ..
158 *
159 * =====================================================================
160 *
161 * .. Parameters ..
162  DOUBLE PRECISION ONE, ZERO
163  parameter ( one = 1.0d+0, zero = 0.0d+0 )
164 * ..
165 * .. Local Scalars ..
166  LOGICAL UDIAG
167  INTEGER I, J
168  DOUBLE PRECISION SCALE, SUM, VALUE
169 * ..
170 * .. External Functions ..
171  LOGICAL LSAME, DISNAN
172  EXTERNAL lsame, disnan
173 * ..
174 * .. External Subroutines ..
175  EXTERNAL zlassq
176 * ..
177 * .. Intrinsic Functions ..
178  INTRINSIC abs, min, sqrt
179 * ..
180 * .. Executable Statements ..
181 *
182  IF( min( m, n ).EQ.0 ) THEN
183  VALUE = zero
184  ELSE IF( lsame( norm, 'M' ) ) THEN
185 *
186 * Find max(abs(A(i,j))).
187 *
188  IF( lsame( diag, 'U' ) ) THEN
189  VALUE = one
190  IF( lsame( uplo, 'U' ) ) THEN
191  DO 20 j = 1, n
192  DO 10 i = 1, min( m, j-1 )
193  sum = abs( a( i, j ) )
194  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
195  10 CONTINUE
196  20 CONTINUE
197  ELSE
198  DO 40 j = 1, n
199  DO 30 i = j + 1, m
200  sum = abs( a( i, j ) )
201  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
202  30 CONTINUE
203  40 CONTINUE
204  END IF
205  ELSE
206  VALUE = zero
207  IF( lsame( uplo, 'U' ) ) THEN
208  DO 60 j = 1, n
209  DO 50 i = 1, min( m, j )
210  sum = abs( a( i, j ) )
211  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
212  50 CONTINUE
213  60 CONTINUE
214  ELSE
215  DO 80 j = 1, n
216  DO 70 i = j, m
217  sum = abs( a( i, j ) )
218  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
219  70 CONTINUE
220  80 CONTINUE
221  END IF
222  END IF
223  ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
224 *
225 * Find norm1(A).
226 *
227  VALUE = zero
228  udiag = lsame( diag, 'U' )
229  IF( lsame( uplo, 'U' ) ) THEN
230  DO 110 j = 1, n
231  IF( ( udiag ) .AND. ( j.LE.m ) ) THEN
232  sum = one
233  DO 90 i = 1, j - 1
234  sum = sum + abs( a( i, j ) )
235  90 CONTINUE
236  ELSE
237  sum = zero
238  DO 100 i = 1, min( m, j )
239  sum = sum + abs( a( i, j ) )
240  100 CONTINUE
241  END IF
242  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
243  110 CONTINUE
244  ELSE
245  DO 140 j = 1, n
246  IF( udiag ) THEN
247  sum = one
248  DO 120 i = j + 1, m
249  sum = sum + abs( a( i, j ) )
250  120 CONTINUE
251  ELSE
252  sum = zero
253  DO 130 i = j, m
254  sum = sum + abs( a( i, j ) )
255  130 CONTINUE
256  END IF
257  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
258  140 CONTINUE
259  END IF
260  ELSE IF( lsame( norm, 'I' ) ) THEN
261 *
262 * Find normI(A).
263 *
264  IF( lsame( uplo, 'U' ) ) THEN
265  IF( lsame( diag, 'U' ) ) THEN
266  DO 150 i = 1, m
267  work( i ) = one
268  150 CONTINUE
269  DO 170 j = 1, n
270  DO 160 i = 1, min( m, j-1 )
271  work( i ) = work( i ) + abs( a( i, j ) )
272  160 CONTINUE
273  170 CONTINUE
274  ELSE
275  DO 180 i = 1, m
276  work( i ) = zero
277  180 CONTINUE
278  DO 200 j = 1, n
279  DO 190 i = 1, min( m, j )
280  work( i ) = work( i ) + abs( a( i, j ) )
281  190 CONTINUE
282  200 CONTINUE
283  END IF
284  ELSE
285  IF( lsame( diag, 'U' ) ) THEN
286  DO 210 i = 1, n
287  work( i ) = one
288  210 CONTINUE
289  DO 220 i = n + 1, m
290  work( i ) = zero
291  220 CONTINUE
292  DO 240 j = 1, n
293  DO 230 i = j + 1, m
294  work( i ) = work( i ) + abs( a( i, j ) )
295  230 CONTINUE
296  240 CONTINUE
297  ELSE
298  DO 250 i = 1, m
299  work( i ) = zero
300  250 CONTINUE
301  DO 270 j = 1, n
302  DO 260 i = j, m
303  work( i ) = work( i ) + abs( a( i, j ) )
304  260 CONTINUE
305  270 CONTINUE
306  END IF
307  END IF
308  VALUE = zero
309  DO 280 i = 1, m
310  sum = work( i )
311  IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
312  280 CONTINUE
313  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
314 *
315 * Find normF(A).
316 *
317  IF( lsame( uplo, 'U' ) ) THEN
318  IF( lsame( diag, 'U' ) ) THEN
319  scale = one
320  sum = min( m, n )
321  DO 290 j = 2, n
322  CALL zlassq( min( m, j-1 ), a( 1, j ), 1, scale, sum )
323  290 CONTINUE
324  ELSE
325  scale = zero
326  sum = one
327  DO 300 j = 1, n
328  CALL zlassq( min( m, j ), a( 1, j ), 1, scale, sum )
329  300 CONTINUE
330  END IF
331  ELSE
332  IF( lsame( diag, 'U' ) ) THEN
333  scale = one
334  sum = min( m, n )
335  DO 310 j = 1, n
336  CALL zlassq( m-j, a( min( m, j+1 ), j ), 1, scale,
337  $ sum )
338  310 CONTINUE
339  ELSE
340  scale = zero
341  sum = one
342  DO 320 j = 1, n
343  CALL zlassq( m-j+1, a( j, j ), 1, scale, sum )
344  320 CONTINUE
345  END IF
346  END IF
347  VALUE = scale*sqrt( sum )
348  END IF
349 *
350  zlantr = VALUE
351  RETURN
352 *
353 * End of ZLANTR
354 *
355  END
double precision function zlantr(NORM, UPLO, DIAG, M, N, A, LDA, WORK)
ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
Definition: zlantr.f:144
subroutine zlassq(N, X, INCX, SCALE, SUMSQ)
ZLASSQ updates a sum of squares represented in scaled form.
Definition: zlassq.f:108