LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
stgexc.f
Go to the documentation of this file.
1 *> \brief \b STGEXC
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download STGEXC + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgexc.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgexc.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgexc.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE STGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
22 * LDZ, IFST, ILST, WORK, LWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * LOGICAL WANTQ, WANTZ
26 * INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N
27 * ..
28 * .. Array Arguments ..
29 * REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
30 * $ WORK( * ), Z( LDZ, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> STGEXC reorders the generalized real Schur decomposition of a real
40 *> matrix pair (A,B) using an orthogonal equivalence transformation
41 *>
42 *> (A, B) = Q * (A, B) * Z**T,
43 *>
44 *> so that the diagonal block of (A, B) with row index IFST is moved
45 *> to row ILST.
46 *>
47 *> (A, B) must be in generalized real Schur canonical form (as returned
48 *> by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
49 *> diagonal blocks. B is upper triangular.
50 *>
51 *> Optionally, the matrices Q and Z of generalized Schur vectors are
52 *> updated.
53 *>
54 *> Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
55 *> Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
56 *>
57 *> \endverbatim
58 *
59 * Arguments:
60 * ==========
61 *
62 *> \param[in] WANTQ
63 *> \verbatim
64 *> WANTQ is LOGICAL
65 *> .TRUE. : update the left transformation matrix Q;
66 *> .FALSE.: do not update Q.
67 *> \endverbatim
68 *>
69 *> \param[in] WANTZ
70 *> \verbatim
71 *> WANTZ is LOGICAL
72 *> .TRUE. : update the right transformation matrix Z;
73 *> .FALSE.: do not update Z.
74 *> \endverbatim
75 *>
76 *> \param[in] N
77 *> \verbatim
78 *> N is INTEGER
79 *> The order of the matrices A and B. N >= 0.
80 *> \endverbatim
81 *>
82 *> \param[in,out] A
83 *> \verbatim
84 *> A is REAL array, dimension (LDA,N)
85 *> On entry, the matrix A in generalized real Schur canonical
86 *> form.
87 *> On exit, the updated matrix A, again in generalized
88 *> real Schur canonical form.
89 *> \endverbatim
90 *>
91 *> \param[in] LDA
92 *> \verbatim
93 *> LDA is INTEGER
94 *> The leading dimension of the array A. LDA >= max(1,N).
95 *> \endverbatim
96 *>
97 *> \param[in,out] B
98 *> \verbatim
99 *> B is REAL array, dimension (LDB,N)
100 *> On entry, the matrix B in generalized real Schur canonical
101 *> form (A,B).
102 *> On exit, the updated matrix B, again in generalized
103 *> real Schur canonical form (A,B).
104 *> \endverbatim
105 *>
106 *> \param[in] LDB
107 *> \verbatim
108 *> LDB is INTEGER
109 *> The leading dimension of the array B. LDB >= max(1,N).
110 *> \endverbatim
111 *>
112 *> \param[in,out] Q
113 *> \verbatim
114 *> Q is REAL array, dimension (LDZ,N)
115 *> On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
116 *> On exit, the updated matrix Q.
117 *> If WANTQ = .FALSE., Q is not referenced.
118 *> \endverbatim
119 *>
120 *> \param[in] LDQ
121 *> \verbatim
122 *> LDQ is INTEGER
123 *> The leading dimension of the array Q. LDQ >= 1.
124 *> If WANTQ = .TRUE., LDQ >= N.
125 *> \endverbatim
126 *>
127 *> \param[in,out] Z
128 *> \verbatim
129 *> Z is REAL array, dimension (LDZ,N)
130 *> On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
131 *> On exit, the updated matrix Z.
132 *> If WANTZ = .FALSE., Z is not referenced.
133 *> \endverbatim
134 *>
135 *> \param[in] LDZ
136 *> \verbatim
137 *> LDZ is INTEGER
138 *> The leading dimension of the array Z. LDZ >= 1.
139 *> If WANTZ = .TRUE., LDZ >= N.
140 *> \endverbatim
141 *>
142 *> \param[in,out] IFST
143 *> \verbatim
144 *> IFST is INTEGER
145 *> \endverbatim
146 *>
147 *> \param[in,out] ILST
148 *> \verbatim
149 *> ILST is INTEGER
150 *> Specify the reordering of the diagonal blocks of (A, B).
151 *> The block with row index IFST is moved to row ILST, by a
152 *> sequence of swapping between adjacent blocks.
153 *> On exit, if IFST pointed on entry to the second row of
154 *> a 2-by-2 block, it is changed to point to the first row;
155 *> ILST always points to the first row of the block in its
156 *> final position (which may differ from its input value by
157 *> +1 or -1). 1 <= IFST, ILST <= N.
158 *> \endverbatim
159 *>
160 *> \param[out] WORK
161 *> \verbatim
162 *> WORK is REAL array, dimension (MAX(1,LWORK))
163 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
164 *> \endverbatim
165 *>
166 *> \param[in] LWORK
167 *> \verbatim
168 *> LWORK is INTEGER
169 *> The dimension of the array WORK.
170 *> LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
171 *>
172 *> If LWORK = -1, then a workspace query is assumed; the routine
173 *> only calculates the optimal size of the WORK array, returns
174 *> this value as the first entry of the WORK array, and no error
175 *> message related to LWORK is issued by XERBLA.
176 *> \endverbatim
177 *>
178 *> \param[out] INFO
179 *> \verbatim
180 *> INFO is INTEGER
181 *> =0: successful exit.
182 *> <0: if INFO = -i, the i-th argument had an illegal value.
183 *> =1: The transformed matrix pair (A, B) would be too far
184 *> from generalized Schur form; the problem is ill-
185 *> conditioned. (A, B) may have been partially reordered,
186 *> and ILST points to the first row of the current
187 *> position of the block being moved.
188 *> \endverbatim
189 *
190 * Authors:
191 * ========
192 *
193 *> \author Univ. of Tennessee
194 *> \author Univ. of California Berkeley
195 *> \author Univ. of Colorado Denver
196 *> \author NAG Ltd.
197 *
198 *> \date November 2011
199 *
200 *> \ingroup realGEcomputational
201 *
202 *> \par Contributors:
203 * ==================
204 *>
205 *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
206 *> Umea University, S-901 87 Umea, Sweden.
207 *
208 *> \par References:
209 * ================
210 *>
211 *> \verbatim
212 *>
213 *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
214 *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
215 *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
216 *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
217 *> \endverbatim
218 *>
219 * =====================================================================
220  SUBROUTINE stgexc( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
221  $ ldz, ifst, ilst, work, lwork, info )
222 *
223 * -- LAPACK computational routine (version 3.4.0) --
224 * -- LAPACK is a software package provided by Univ. of Tennessee, --
225 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
226 * November 2011
227 *
228 * .. Scalar Arguments ..
229  LOGICAL WANTQ, WANTZ
230  INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N
231 * ..
232 * .. Array Arguments ..
233  REAL A( lda, * ), B( ldb, * ), Q( ldq, * ),
234  $ work( * ), z( ldz, * )
235 * ..
236 *
237 * =====================================================================
238 *
239 * .. Parameters ..
240  REAL ZERO
241  parameter ( zero = 0.0e+0 )
242 * ..
243 * .. Local Scalars ..
244  LOGICAL LQUERY
245  INTEGER HERE, LWMIN, NBF, NBL, NBNEXT
246 * ..
247 * .. External Subroutines ..
248  EXTERNAL stgex2, xerbla
249 * ..
250 * .. Intrinsic Functions ..
251  INTRINSIC max
252 * ..
253 * .. Executable Statements ..
254 *
255 * Decode and test input arguments.
256 *
257  info = 0
258  lquery = ( lwork.EQ.-1 )
259  IF( n.LT.0 ) THEN
260  info = -3
261  ELSE IF( lda.LT.max( 1, n ) ) THEN
262  info = -5
263  ELSE IF( ldb.LT.max( 1, n ) ) THEN
264  info = -7
265  ELSE IF( ldq.LT.1 .OR. wantq .AND. ( ldq.LT.max( 1, n ) ) ) THEN
266  info = -9
267  ELSE IF( ldz.LT.1 .OR. wantz .AND. ( ldz.LT.max( 1, n ) ) ) THEN
268  info = -11
269  ELSE IF( ifst.LT.1 .OR. ifst.GT.n ) THEN
270  info = -12
271  ELSE IF( ilst.LT.1 .OR. ilst.GT.n ) THEN
272  info = -13
273  END IF
274 *
275  IF( info.EQ.0 ) THEN
276  IF( n.LE.1 ) THEN
277  lwmin = 1
278  ELSE
279  lwmin = 4*n + 16
280  END IF
281  work(1) = lwmin
282 *
283  IF (lwork.LT.lwmin .AND. .NOT.lquery) THEN
284  info = -15
285  END IF
286  END IF
287 *
288  IF( info.NE.0 ) THEN
289  CALL xerbla( 'STGEXC', -info )
290  RETURN
291  ELSE IF( lquery ) THEN
292  RETURN
293  END IF
294 *
295 * Quick return if possible
296 *
297  IF( n.LE.1 )
298  $ RETURN
299 *
300 * Determine the first row of the specified block and find out
301 * if it is 1-by-1 or 2-by-2.
302 *
303  IF( ifst.GT.1 ) THEN
304  IF( a( ifst, ifst-1 ).NE.zero )
305  $ ifst = ifst - 1
306  END IF
307  nbf = 1
308  IF( ifst.LT.n ) THEN
309  IF( a( ifst+1, ifst ).NE.zero )
310  $ nbf = 2
311  END IF
312 *
313 * Determine the first row of the final block
314 * and find out if it is 1-by-1 or 2-by-2.
315 *
316  IF( ilst.GT.1 ) THEN
317  IF( a( ilst, ilst-1 ).NE.zero )
318  $ ilst = ilst - 1
319  END IF
320  nbl = 1
321  IF( ilst.LT.n ) THEN
322  IF( a( ilst+1, ilst ).NE.zero )
323  $ nbl = 2
324  END IF
325  IF( ifst.EQ.ilst )
326  $ RETURN
327 *
328  IF( ifst.LT.ilst ) THEN
329 *
330 * Update ILST.
331 *
332  IF( nbf.EQ.2 .AND. nbl.EQ.1 )
333  $ ilst = ilst - 1
334  IF( nbf.EQ.1 .AND. nbl.EQ.2 )
335  $ ilst = ilst + 1
336 *
337  here = ifst
338 *
339  10 CONTINUE
340 *
341 * Swap with next one below.
342 *
343  IF( nbf.EQ.1 .OR. nbf.EQ.2 ) THEN
344 *
345 * Current block either 1-by-1 or 2-by-2.
346 *
347  nbnext = 1
348  IF( here+nbf+1.LE.n ) THEN
349  IF( a( here+nbf+1, here+nbf ).NE.zero )
350  $ nbnext = 2
351  END IF
352  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
353  $ ldz, here, nbf, nbnext, work, lwork, info )
354  IF( info.NE.0 ) THEN
355  ilst = here
356  RETURN
357  END IF
358  here = here + nbnext
359 *
360 * Test if 2-by-2 block breaks into two 1-by-1 blocks.
361 *
362  IF( nbf.EQ.2 ) THEN
363  IF( a( here+1, here ).EQ.zero )
364  $ nbf = 3
365  END IF
366 *
367  ELSE
368 *
369 * Current block consists of two 1-by-1 blocks, each of which
370 * must be swapped individually.
371 *
372  nbnext = 1
373  IF( here+3.LE.n ) THEN
374  IF( a( here+3, here+2 ).NE.zero )
375  $ nbnext = 2
376  END IF
377  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
378  $ ldz, here+1, 1, nbnext, work, lwork, info )
379  IF( info.NE.0 ) THEN
380  ilst = here
381  RETURN
382  END IF
383  IF( nbnext.EQ.1 ) THEN
384 *
385 * Swap two 1-by-1 blocks.
386 *
387  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
388  $ ldz, here, 1, 1, work, lwork, info )
389  IF( info.NE.0 ) THEN
390  ilst = here
391  RETURN
392  END IF
393  here = here + 1
394 *
395  ELSE
396 *
397 * Recompute NBNEXT in case of 2-by-2 split.
398 *
399  IF( a( here+2, here+1 ).EQ.zero )
400  $ nbnext = 1
401  IF( nbnext.EQ.2 ) THEN
402 *
403 * 2-by-2 block did not split.
404 *
405  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
406  $ z, ldz, here, 1, nbnext, work, lwork,
407  $ info )
408  IF( info.NE.0 ) THEN
409  ilst = here
410  RETURN
411  END IF
412  here = here + 2
413  ELSE
414 *
415 * 2-by-2 block did split.
416 *
417  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
418  $ z, ldz, here, 1, 1, work, lwork, info )
419  IF( info.NE.0 ) THEN
420  ilst = here
421  RETURN
422  END IF
423  here = here + 1
424  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
425  $ z, ldz, here, 1, 1, work, lwork, info )
426  IF( info.NE.0 ) THEN
427  ilst = here
428  RETURN
429  END IF
430  here = here + 1
431  END IF
432 *
433  END IF
434  END IF
435  IF( here.LT.ilst )
436  $ GO TO 10
437  ELSE
438  here = ifst
439 *
440  20 CONTINUE
441 *
442 * Swap with next one below.
443 *
444  IF( nbf.EQ.1 .OR. nbf.EQ.2 ) THEN
445 *
446 * Current block either 1-by-1 or 2-by-2.
447 *
448  nbnext = 1
449  IF( here.GE.3 ) THEN
450  IF( a( here-1, here-2 ).NE.zero )
451  $ nbnext = 2
452  END IF
453  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
454  $ ldz, here-nbnext, nbnext, nbf, work, lwork,
455  $ info )
456  IF( info.NE.0 ) THEN
457  ilst = here
458  RETURN
459  END IF
460  here = here - nbnext
461 *
462 * Test if 2-by-2 block breaks into two 1-by-1 blocks.
463 *
464  IF( nbf.EQ.2 ) THEN
465  IF( a( here+1, here ).EQ.zero )
466  $ nbf = 3
467  END IF
468 *
469  ELSE
470 *
471 * Current block consists of two 1-by-1 blocks, each of which
472 * must be swapped individually.
473 *
474  nbnext = 1
475  IF( here.GE.3 ) THEN
476  IF( a( here-1, here-2 ).NE.zero )
477  $ nbnext = 2
478  END IF
479  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
480  $ ldz, here-nbnext, nbnext, 1, work, lwork,
481  $ info )
482  IF( info.NE.0 ) THEN
483  ilst = here
484  RETURN
485  END IF
486  IF( nbnext.EQ.1 ) THEN
487 *
488 * Swap two 1-by-1 blocks.
489 *
490  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z,
491  $ ldz, here, nbnext, 1, work, lwork, info )
492  IF( info.NE.0 ) THEN
493  ilst = here
494  RETURN
495  END IF
496  here = here - 1
497  ELSE
498 *
499 * Recompute NBNEXT in case of 2-by-2 split.
500 *
501  IF( a( here, here-1 ).EQ.zero )
502  $ nbnext = 1
503  IF( nbnext.EQ.2 ) THEN
504 *
505 * 2-by-2 block did not split.
506 *
507  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
508  $ z, ldz, here-1, 2, 1, work, lwork, info )
509  IF( info.NE.0 ) THEN
510  ilst = here
511  RETURN
512  END IF
513  here = here - 2
514  ELSE
515 *
516 * 2-by-2 block did split.
517 *
518  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
519  $ z, ldz, here, 1, 1, work, lwork, info )
520  IF( info.NE.0 ) THEN
521  ilst = here
522  RETURN
523  END IF
524  here = here - 1
525  CALL stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq,
526  $ z, ldz, here, 1, 1, work, lwork, info )
527  IF( info.NE.0 ) THEN
528  ilst = here
529  RETURN
530  END IF
531  here = here - 1
532  END IF
533  END IF
534  END IF
535  IF( here.GT.ilst )
536  $ GO TO 20
537  END IF
538  ilst = here
539  work( 1 ) = lwmin
540  RETURN
541 *
542 * End of STGEXC
543 *
544  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine stgexc(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, WORK, LWORK, INFO)
STGEXC
Definition: stgexc.f:222
subroutine stgex2(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, N1, N2, WORK, LWORK, INFO)
STGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equ...
Definition: stgex2.f:223