LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zlaev2 ( complex*16  A,
complex*16  B,
complex*16  C,
double precision  RT1,
double precision  RT2,
double precision  CS1,
complex*16  SN1 
)

ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Download ZLAEV2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
    [  A         B  ]
    [  CONJG(B)  C  ].
 On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 eigenvector for RT1, giving the decomposition

 [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
 [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
Parameters
[in]A
          A is COMPLEX*16
         The (1,1) element of the 2-by-2 matrix.
[in]B
          B is COMPLEX*16
         The (1,2) element and the conjugate of the (2,1) element of
         the 2-by-2 matrix.
[in]C
          C is COMPLEX*16
         The (2,2) element of the 2-by-2 matrix.
[out]RT1
          RT1 is DOUBLE PRECISION
         The eigenvalue of larger absolute value.
[out]RT2
          RT2 is DOUBLE PRECISION
         The eigenvalue of smaller absolute value.
[out]CS1
          CS1 is DOUBLE PRECISION
[out]SN1
          SN1 is COMPLEX*16
         The vector (CS1, SN1) is a unit right eigenvector for RT1.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012
Further Details:
  RT1 is accurate to a few ulps barring over/underflow.

  RT2 may be inaccurate if there is massive cancellation in the
  determinant A*C-B*B; higher precision or correctly rounded or
  correctly truncated arithmetic would be needed to compute RT2
  accurately in all cases.

  CS1 and SN1 are accurate to a few ulps barring over/underflow.

  Overflow is possible only if RT1 is within a factor of 5 of overflow.
  Underflow is harmless if the input data is 0 or exceeds
     underflow_threshold / macheps.

Definition at line 123 of file zlaev2.f.

123 *
124 * -- LAPACK auxiliary routine (version 3.4.2) --
125 * -- LAPACK is a software package provided by Univ. of Tennessee, --
126 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127 * September 2012
128 *
129 * .. Scalar Arguments ..
130  DOUBLE PRECISION cs1, rt1, rt2
131  COMPLEX*16 a, b, c, sn1
132 * ..
133 *
134 * =====================================================================
135 *
136 * .. Parameters ..
137  DOUBLE PRECISION zero
138  parameter ( zero = 0.0d0 )
139  DOUBLE PRECISION one
140  parameter ( one = 1.0d0 )
141 * ..
142 * .. Local Scalars ..
143  DOUBLE PRECISION t
144  COMPLEX*16 w
145 * ..
146 * .. External Subroutines ..
147  EXTERNAL dlaev2
148 * ..
149 * .. Intrinsic Functions ..
150  INTRINSIC abs, dble, dconjg
151 * ..
152 * .. Executable Statements ..
153 *
154  IF( abs( b ).EQ.zero ) THEN
155  w = one
156  ELSE
157  w = dconjg( b ) / abs( b )
158  END IF
159  CALL dlaev2( dble( a ), abs( b ), dble( c ), rt1, rt2, cs1, t )
160  sn1 = w*t
161  RETURN
162 *
163 * End of ZLAEV2
164 *
subroutine dlaev2(A, B, C, RT1, RT2, CS1, SN1)
DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition: dlaev2.f:122

Here is the call graph for this function: