LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cunbdb.f
Go to the documentation of this file.
1 *> \brief \b CUNBDB
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CUNBDB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
22 * X21, LDX21, X22, LDX22, THETA, PHI, TAUP1,
23 * TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER SIGNS, TRANS
27 * INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
28 * $ Q
29 * ..
30 * .. Array Arguments ..
31 * REAL PHI( * ), THETA( * )
32 * COMPLEX TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
33 * $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ),
34 * $ X21( LDX21, * ), X22( LDX22, * )
35 * ..
36 *
37 *
38 *> \par Purpose:
39 * =============
40 *>
41 *> \verbatim
42 *>
43 *> CUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
44 *> partitioned unitary matrix X:
45 *>
46 *> [ B11 | B12 0 0 ]
47 *> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H
48 *> X = [-----------] = [---------] [----------------] [---------] .
49 *> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
50 *> [ 0 | 0 0 I ]
51 *>
52 *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
53 *> not the case, then X must be transposed and/or permuted. This can be
54 *> done in constant time using the TRANS and SIGNS options. See CUNCSD
55 *> for details.)
56 *>
57 *> The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
58 *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
59 *> represented implicitly by Householder vectors.
60 *>
61 *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
62 *> implicitly by angles THETA, PHI.
63 *> \endverbatim
64 *
65 * Arguments:
66 * ==========
67 *
68 *> \param[in] TRANS
69 *> \verbatim
70 *> TRANS is CHARACTER
71 *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
72 *> order;
73 *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
74 *> major order.
75 *> \endverbatim
76 *>
77 *> \param[in] SIGNS
78 *> \verbatim
79 *> SIGNS is CHARACTER
80 *> = 'O': The lower-left block is made nonpositive (the
81 *> "other" convention);
82 *> otherwise: The upper-right block is made nonpositive (the
83 *> "default" convention).
84 *> \endverbatim
85 *>
86 *> \param[in] M
87 *> \verbatim
88 *> M is INTEGER
89 *> The number of rows and columns in X.
90 *> \endverbatim
91 *>
92 *> \param[in] P
93 *> \verbatim
94 *> P is INTEGER
95 *> The number of rows in X11 and X12. 0 <= P <= M.
96 *> \endverbatim
97 *>
98 *> \param[in] Q
99 *> \verbatim
100 *> Q is INTEGER
101 *> The number of columns in X11 and X21. 0 <= Q <=
102 *> MIN(P,M-P,M-Q).
103 *> \endverbatim
104 *>
105 *> \param[in,out] X11
106 *> \verbatim
107 *> X11 is COMPLEX array, dimension (LDX11,Q)
108 *> On entry, the top-left block of the unitary matrix to be
109 *> reduced. On exit, the form depends on TRANS:
110 *> If TRANS = 'N', then
111 *> the columns of tril(X11) specify reflectors for P1,
112 *> the rows of triu(X11,1) specify reflectors for Q1;
113 *> else TRANS = 'T', and
114 *> the rows of triu(X11) specify reflectors for P1,
115 *> the columns of tril(X11,-1) specify reflectors for Q1.
116 *> \endverbatim
117 *>
118 *> \param[in] LDX11
119 *> \verbatim
120 *> LDX11 is INTEGER
121 *> The leading dimension of X11. If TRANS = 'N', then LDX11 >=
122 *> P; else LDX11 >= Q.
123 *> \endverbatim
124 *>
125 *> \param[in,out] X12
126 *> \verbatim
127 *> X12 is COMPLEX array, dimension (LDX12,M-Q)
128 *> On entry, the top-right block of the unitary matrix to
129 *> be reduced. On exit, the form depends on TRANS:
130 *> If TRANS = 'N', then
131 *> the rows of triu(X12) specify the first P reflectors for
132 *> Q2;
133 *> else TRANS = 'T', and
134 *> the columns of tril(X12) specify the first P reflectors
135 *> for Q2.
136 *> \endverbatim
137 *>
138 *> \param[in] LDX12
139 *> \verbatim
140 *> LDX12 is INTEGER
141 *> The leading dimension of X12. If TRANS = 'N', then LDX12 >=
142 *> P; else LDX11 >= M-Q.
143 *> \endverbatim
144 *>
145 *> \param[in,out] X21
146 *> \verbatim
147 *> X21 is COMPLEX array, dimension (LDX21,Q)
148 *> On entry, the bottom-left block of the unitary matrix to
149 *> be reduced. On exit, the form depends on TRANS:
150 *> If TRANS = 'N', then
151 *> the columns of tril(X21) specify reflectors for P2;
152 *> else TRANS = 'T', and
153 *> the rows of triu(X21) specify reflectors for P2.
154 *> \endverbatim
155 *>
156 *> \param[in] LDX21
157 *> \verbatim
158 *> LDX21 is INTEGER
159 *> The leading dimension of X21. If TRANS = 'N', then LDX21 >=
160 *> M-P; else LDX21 >= Q.
161 *> \endverbatim
162 *>
163 *> \param[in,out] X22
164 *> \verbatim
165 *> X22 is COMPLEX array, dimension (LDX22,M-Q)
166 *> On entry, the bottom-right block of the unitary matrix to
167 *> be reduced. On exit, the form depends on TRANS:
168 *> If TRANS = 'N', then
169 *> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
170 *> M-P-Q reflectors for Q2,
171 *> else TRANS = 'T', and
172 *> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
173 *> M-P-Q reflectors for P2.
174 *> \endverbatim
175 *>
176 *> \param[in] LDX22
177 *> \verbatim
178 *> LDX22 is INTEGER
179 *> The leading dimension of X22. If TRANS = 'N', then LDX22 >=
180 *> M-P; else LDX22 >= M-Q.
181 *> \endverbatim
182 *>
183 *> \param[out] THETA
184 *> \verbatim
185 *> THETA is REAL array, dimension (Q)
186 *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
187 *> be computed from the angles THETA and PHI. See Further
188 *> Details.
189 *> \endverbatim
190 *>
191 *> \param[out] PHI
192 *> \verbatim
193 *> PHI is REAL array, dimension (Q-1)
194 *> The entries of the bidiagonal blocks B11, B12, B21, B22 can
195 *> be computed from the angles THETA and PHI. See Further
196 *> Details.
197 *> \endverbatim
198 *>
199 *> \param[out] TAUP1
200 *> \verbatim
201 *> TAUP1 is COMPLEX array, dimension (P)
202 *> The scalar factors of the elementary reflectors that define
203 *> P1.
204 *> \endverbatim
205 *>
206 *> \param[out] TAUP2
207 *> \verbatim
208 *> TAUP2 is COMPLEX array, dimension (M-P)
209 *> The scalar factors of the elementary reflectors that define
210 *> P2.
211 *> \endverbatim
212 *>
213 *> \param[out] TAUQ1
214 *> \verbatim
215 *> TAUQ1 is COMPLEX array, dimension (Q)
216 *> The scalar factors of the elementary reflectors that define
217 *> Q1.
218 *> \endverbatim
219 *>
220 *> \param[out] TAUQ2
221 *> \verbatim
222 *> TAUQ2 is COMPLEX array, dimension (M-Q)
223 *> The scalar factors of the elementary reflectors that define
224 *> Q2.
225 *> \endverbatim
226 *>
227 *> \param[out] WORK
228 *> \verbatim
229 *> WORK is COMPLEX array, dimension (LWORK)
230 *> \endverbatim
231 *>
232 *> \param[in] LWORK
233 *> \verbatim
234 *> LWORK is INTEGER
235 *> The dimension of the array WORK. LWORK >= M-Q.
236 *>
237 *> If LWORK = -1, then a workspace query is assumed; the routine
238 *> only calculates the optimal size of the WORK array, returns
239 *> this value as the first entry of the WORK array, and no error
240 *> message related to LWORK is issued by XERBLA.
241 *> \endverbatim
242 *>
243 *> \param[out] INFO
244 *> \verbatim
245 *> INFO is INTEGER
246 *> = 0: successful exit.
247 *> < 0: if INFO = -i, the i-th argument had an illegal value.
248 *> \endverbatim
249 *
250 * Authors:
251 * ========
252 *
253 *> \author Univ. of Tennessee
254 *> \author Univ. of California Berkeley
255 *> \author Univ. of Colorado Denver
256 *> \author NAG Ltd.
257 *
258 *> \date November 2013
259 *
260 *> \ingroup complexOTHERcomputational
261 *
262 *> \par Further Details:
263 * =====================
264 *>
265 *> \verbatim
266 *>
267 *> The bidiagonal blocks B11, B12, B21, and B22 are represented
268 *> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
269 *> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
270 *> lower bidiagonal. Every entry in each bidiagonal band is a product
271 *> of a sine or cosine of a THETA with a sine or cosine of a PHI. See
272 *> [1] or CUNCSD for details.
273 *>
274 *> P1, P2, Q1, and Q2 are represented as products of elementary
275 *> reflectors. See CUNCSD for details on generating P1, P2, Q1, and Q2
276 *> using CUNGQR and CUNGLQ.
277 *> \endverbatim
278 *
279 *> \par References:
280 * ================
281 *>
282 *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
283 *> Algorithms, 50(1):33-65, 2009.
284 *>
285 * =====================================================================
286  SUBROUTINE cunbdb( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
287  $ x21, ldx21, x22, ldx22, theta, phi, taup1,
288  $ taup2, tauq1, tauq2, work, lwork, info )
289 *
290 * -- LAPACK computational routine (version 3.5.0) --
291 * -- LAPACK is a software package provided by Univ. of Tennessee, --
292 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
293 * November 2013
294 *
295 * .. Scalar Arguments ..
296  CHARACTER SIGNS, TRANS
297  INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P,
298  $ q
299 * ..
300 * .. Array Arguments ..
301  REAL PHI( * ), THETA( * )
302  COMPLEX TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ),
303  $ work( * ), x11( ldx11, * ), x12( ldx12, * ),
304  $ x21( ldx21, * ), x22( ldx22, * )
305 * ..
306 *
307 * ====================================================================
308 *
309 * .. Parameters ..
310  REAL REALONE
311  parameter ( realone = 1.0e0 )
312  COMPLEX ONE
313  parameter ( one = (1.0e0,0.0e0) )
314 * ..
315 * .. Local Scalars ..
316  LOGICAL COLMAJOR, LQUERY
317  INTEGER I, LWORKMIN, LWORKOPT
318  REAL Z1, Z2, Z3, Z4
319 * ..
320 * .. External Subroutines ..
321  EXTERNAL caxpy, clarf, clarfgp, cscal, xerbla
322  EXTERNAL clacgv
323 *
324 * ..
325 * .. External Functions ..
326  REAL SCNRM2
327  LOGICAL LSAME
328  EXTERNAL scnrm2, lsame
329 * ..
330 * .. Intrinsic Functions
331  INTRINSIC atan2, cos, max, min, sin
332  INTRINSIC cmplx, conjg
333 * ..
334 * .. Executable Statements ..
335 *
336 * Test input arguments
337 *
338  info = 0
339  colmajor = .NOT. lsame( trans, 'T' )
340  IF( .NOT. lsame( signs, 'O' ) ) THEN
341  z1 = realone
342  z2 = realone
343  z3 = realone
344  z4 = realone
345  ELSE
346  z1 = realone
347  z2 = -realone
348  z3 = realone
349  z4 = -realone
350  END IF
351  lquery = lwork .EQ. -1
352 *
353  IF( m .LT. 0 ) THEN
354  info = -3
355  ELSE IF( p .LT. 0 .OR. p .GT. m ) THEN
356  info = -4
357  ELSE IF( q .LT. 0 .OR. q .GT. p .OR. q .GT. m-p .OR.
358  $ q .GT. m-q ) THEN
359  info = -5
360  ELSE IF( colmajor .AND. ldx11 .LT. max( 1, p ) ) THEN
361  info = -7
362  ELSE IF( .NOT.colmajor .AND. ldx11 .LT. max( 1, q ) ) THEN
363  info = -7
364  ELSE IF( colmajor .AND. ldx12 .LT. max( 1, p ) ) THEN
365  info = -9
366  ELSE IF( .NOT.colmajor .AND. ldx12 .LT. max( 1, m-q ) ) THEN
367  info = -9
368  ELSE IF( colmajor .AND. ldx21 .LT. max( 1, m-p ) ) THEN
369  info = -11
370  ELSE IF( .NOT.colmajor .AND. ldx21 .LT. max( 1, q ) ) THEN
371  info = -11
372  ELSE IF( colmajor .AND. ldx22 .LT. max( 1, m-p ) ) THEN
373  info = -13
374  ELSE IF( .NOT.colmajor .AND. ldx22 .LT. max( 1, m-q ) ) THEN
375  info = -13
376  END IF
377 *
378 * Compute workspace
379 *
380  IF( info .EQ. 0 ) THEN
381  lworkopt = m - q
382  lworkmin = m - q
383  work(1) = lworkopt
384  IF( lwork .LT. lworkmin .AND. .NOT. lquery ) THEN
385  info = -21
386  END IF
387  END IF
388  IF( info .NE. 0 ) THEN
389  CALL xerbla( 'xORBDB', -info )
390  RETURN
391  ELSE IF( lquery ) THEN
392  RETURN
393  END IF
394 *
395 * Handle column-major and row-major separately
396 *
397  IF( colmajor ) THEN
398 *
399 * Reduce columns 1, ..., Q of X11, X12, X21, and X22
400 *
401  DO i = 1, q
402 *
403  IF( i .EQ. 1 ) THEN
404  CALL cscal( p-i+1, cmplx( z1, 0.0e0 ), x11(i,i), 1 )
405  ELSE
406  CALL cscal( p-i+1, cmplx( z1*cos(phi(i-1)), 0.0e0 ),
407  $ x11(i,i), 1 )
408  CALL caxpy( p-i+1, cmplx( -z1*z3*z4*sin(phi(i-1)),
409  $ 0.0e0 ), x12(i,i-1), 1, x11(i,i), 1 )
410  END IF
411  IF( i .EQ. 1 ) THEN
412  CALL cscal( m-p-i+1, cmplx( z2, 0.0e0 ), x21(i,i), 1 )
413  ELSE
414  CALL cscal( m-p-i+1, cmplx( z2*cos(phi(i-1)), 0.0e0 ),
415  $ x21(i,i), 1 )
416  CALL caxpy( m-p-i+1, cmplx( -z2*z3*z4*sin(phi(i-1)),
417  $ 0.0e0 ), x22(i,i-1), 1, x21(i,i), 1 )
418  END IF
419 *
420  theta(i) = atan2( scnrm2( m-p-i+1, x21(i,i), 1 ),
421  $ scnrm2( p-i+1, x11(i,i), 1 ) )
422 *
423  IF( p .GT. i ) THEN
424  CALL clarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
425  ELSE IF ( p .EQ. i ) THEN
426  CALL clarfgp( p-i+1, x11(i,i), x11(i,i), 1, taup1(i) )
427  END IF
428  x11(i,i) = one
429  IF ( m-p .GT. i ) THEN
430  CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1,
431  $ taup2(i) )
432  ELSE IF ( m-p .EQ. i ) THEN
433  CALL clarfgp( m-p-i+1, x21(i,i), x21(i,i), 1,
434  $ taup2(i) )
435  END IF
436  x21(i,i) = one
437 *
438  IF ( q .GT. i ) THEN
439  CALL clarf( 'L', p-i+1, q-i, x11(i,i), 1,
440  $ conjg(taup1(i)), x11(i,i+1), ldx11, work )
441  CALL clarf( 'L', m-p-i+1, q-i, x21(i,i), 1,
442  $ conjg(taup2(i)), x21(i,i+1), ldx21, work )
443  END IF
444  IF ( m-q+1 .GT. i ) THEN
445  CALL clarf( 'L', p-i+1, m-q-i+1, x11(i,i), 1,
446  $ conjg(taup1(i)), x12(i,i), ldx12, work )
447  CALL clarf( 'L', m-p-i+1, m-q-i+1, x21(i,i), 1,
448  $ conjg(taup2(i)), x22(i,i), ldx22, work )
449  END IF
450 *
451  IF( i .LT. q ) THEN
452  CALL cscal( q-i, cmplx( -z1*z3*sin(theta(i)), 0.0e0 ),
453  $ x11(i,i+1), ldx11 )
454  CALL caxpy( q-i, cmplx( z2*z3*cos(theta(i)), 0.0e0 ),
455  $ x21(i,i+1), ldx21, x11(i,i+1), ldx11 )
456  END IF
457  CALL cscal( m-q-i+1, cmplx( -z1*z4*sin(theta(i)), 0.0e0 ),
458  $ x12(i,i), ldx12 )
459  CALL caxpy( m-q-i+1, cmplx( z2*z4*cos(theta(i)), 0.0e0 ),
460  $ x22(i,i), ldx22, x12(i,i), ldx12 )
461 *
462  IF( i .LT. q )
463  $ phi(i) = atan2( scnrm2( q-i, x11(i,i+1), ldx11 ),
464  $ scnrm2( m-q-i+1, x12(i,i), ldx12 ) )
465 *
466  IF( i .LT. q ) THEN
467  CALL clacgv( q-i, x11(i,i+1), ldx11 )
468  IF ( i .EQ. q-1 ) THEN
469  CALL clarfgp( q-i, x11(i,i+1), x11(i,i+1), ldx11,
470  $ tauq1(i) )
471  ELSE
472  CALL clarfgp( q-i, x11(i,i+1), x11(i,i+2), ldx11,
473  $ tauq1(i) )
474  END IF
475  x11(i,i+1) = one
476  END IF
477  IF ( m-q+1 .GT. i ) THEN
478  CALL clacgv( m-q-i+1, x12(i,i), ldx12 )
479  IF ( m-q .EQ. i ) THEN
480  CALL clarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
481  $ tauq2(i) )
482  ELSE
483  CALL clarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
484  $ tauq2(i) )
485  END IF
486  END IF
487  x12(i,i) = one
488 *
489  IF( i .LT. q ) THEN
490  CALL clarf( 'R', p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
491  $ x11(i+1,i+1), ldx11, work )
492  CALL clarf( 'R', m-p-i, q-i, x11(i,i+1), ldx11, tauq1(i),
493  $ x21(i+1,i+1), ldx21, work )
494  END IF
495  IF ( p .GT. i ) THEN
496  CALL clarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
497  $ x12(i+1,i), ldx12, work )
498  END IF
499  IF ( m-p .GT. i ) THEN
500  CALL clarf( 'R', m-p-i, m-q-i+1, x12(i,i), ldx12,
501  $ tauq2(i), x22(i+1,i), ldx22, work )
502  END IF
503 *
504  IF( i .LT. q )
505  $ CALL clacgv( q-i, x11(i,i+1), ldx11 )
506  CALL clacgv( m-q-i+1, x12(i,i), ldx12 )
507 *
508  END DO
509 *
510 * Reduce columns Q + 1, ..., P of X12, X22
511 *
512  DO i = q + 1, p
513 *
514  CALL cscal( m-q-i+1, cmplx( -z1*z4, 0.0e0 ), x12(i,i),
515  $ ldx12 )
516  CALL clacgv( m-q-i+1, x12(i,i), ldx12 )
517  IF ( i .GE. m-q ) THEN
518  CALL clarfgp( m-q-i+1, x12(i,i), x12(i,i), ldx12,
519  $ tauq2(i) )
520  ELSE
521  CALL clarfgp( m-q-i+1, x12(i,i), x12(i,i+1), ldx12,
522  $ tauq2(i) )
523  END IF
524  x12(i,i) = one
525 *
526  IF ( p .GT. i ) THEN
527  CALL clarf( 'R', p-i, m-q-i+1, x12(i,i), ldx12, tauq2(i),
528  $ x12(i+1,i), ldx12, work )
529  END IF
530  IF( m-p-q .GE. 1 )
531  $ CALL clarf( 'R', m-p-q, m-q-i+1, x12(i,i), ldx12,
532  $ tauq2(i), x22(q+1,i), ldx22, work )
533 *
534  CALL clacgv( m-q-i+1, x12(i,i), ldx12 )
535 *
536  END DO
537 *
538 * Reduce columns P + 1, ..., M - Q of X12, X22
539 *
540  DO i = 1, m - p - q
541 *
542  CALL cscal( m-p-q-i+1, cmplx( z2*z4, 0.0e0 ),
543  $ x22(q+i,p+i), ldx22 )
544  CALL clacgv( m-p-q-i+1, x22(q+i,p+i), ldx22 )
545  CALL clarfgp( m-p-q-i+1, x22(q+i,p+i), x22(q+i,p+i+1),
546  $ ldx22, tauq2(p+i) )
547  x22(q+i,p+i) = one
548  CALL clarf( 'R', m-p-q-i, m-p-q-i+1, x22(q+i,p+i), ldx22,
549  $ tauq2(p+i), x22(q+i+1,p+i), ldx22, work )
550 *
551  CALL clacgv( m-p-q-i+1, x22(q+i,p+i), ldx22 )
552 *
553  END DO
554 *
555  ELSE
556 *
557 * Reduce columns 1, ..., Q of X11, X12, X21, X22
558 *
559  DO i = 1, q
560 *
561  IF( i .EQ. 1 ) THEN
562  CALL cscal( p-i+1, cmplx( z1, 0.0e0 ), x11(i,i),
563  $ ldx11 )
564  ELSE
565  CALL cscal( p-i+1, cmplx( z1*cos(phi(i-1)), 0.0e0 ),
566  $ x11(i,i), ldx11 )
567  CALL caxpy( p-i+1, cmplx( -z1*z3*z4*sin(phi(i-1)),
568  $ 0.0e0 ), x12(i-1,i), ldx12, x11(i,i), ldx11 )
569  END IF
570  IF( i .EQ. 1 ) THEN
571  CALL cscal( m-p-i+1, cmplx( z2, 0.0e0 ), x21(i,i),
572  $ ldx21 )
573  ELSE
574  CALL cscal( m-p-i+1, cmplx( z2*cos(phi(i-1)), 0.0e0 ),
575  $ x21(i,i), ldx21 )
576  CALL caxpy( m-p-i+1, cmplx( -z2*z3*z4*sin(phi(i-1)),
577  $ 0.0e0 ), x22(i-1,i), ldx22, x21(i,i), ldx21 )
578  END IF
579 *
580  theta(i) = atan2( scnrm2( m-p-i+1, x21(i,i), ldx21 ),
581  $ scnrm2( p-i+1, x11(i,i), ldx11 ) )
582 *
583  CALL clacgv( p-i+1, x11(i,i), ldx11 )
584  CALL clacgv( m-p-i+1, x21(i,i), ldx21 )
585 *
586  CALL clarfgp( p-i+1, x11(i,i), x11(i,i+1), ldx11, taup1(i) )
587  x11(i,i) = one
588  IF ( i .EQ. m-p ) THEN
589  CALL clarfgp( m-p-i+1, x21(i,i), x21(i,i), ldx21,
590  $ taup2(i) )
591  ELSE
592  CALL clarfgp( m-p-i+1, x21(i,i), x21(i,i+1), ldx21,
593  $ taup2(i) )
594  END IF
595  x21(i,i) = one
596 *
597  CALL clarf( 'R', q-i, p-i+1, x11(i,i), ldx11, taup1(i),
598  $ x11(i+1,i), ldx11, work )
599  CALL clarf( 'R', m-q-i+1, p-i+1, x11(i,i), ldx11, taup1(i),
600  $ x12(i,i), ldx12, work )
601  CALL clarf( 'R', q-i, m-p-i+1, x21(i,i), ldx21, taup2(i),
602  $ x21(i+1,i), ldx21, work )
603  CALL clarf( 'R', m-q-i+1, m-p-i+1, x21(i,i), ldx21,
604  $ taup2(i), x22(i,i), ldx22, work )
605 *
606  CALL clacgv( p-i+1, x11(i,i), ldx11 )
607  CALL clacgv( m-p-i+1, x21(i,i), ldx21 )
608 *
609  IF( i .LT. q ) THEN
610  CALL cscal( q-i, cmplx( -z1*z3*sin(theta(i)), 0.0e0 ),
611  $ x11(i+1,i), 1 )
612  CALL caxpy( q-i, cmplx( z2*z3*cos(theta(i)), 0.0e0 ),
613  $ x21(i+1,i), 1, x11(i+1,i), 1 )
614  END IF
615  CALL cscal( m-q-i+1, cmplx( -z1*z4*sin(theta(i)), 0.0e0 ),
616  $ x12(i,i), 1 )
617  CALL caxpy( m-q-i+1, cmplx( z2*z4*cos(theta(i)), 0.0e0 ),
618  $ x22(i,i), 1, x12(i,i), 1 )
619 *
620  IF( i .LT. q )
621  $ phi(i) = atan2( scnrm2( q-i, x11(i+1,i), 1 ),
622  $ scnrm2( m-q-i+1, x12(i,i), 1 ) )
623 *
624  IF( i .LT. q ) THEN
625  CALL clarfgp( q-i, x11(i+1,i), x11(i+2,i), 1, tauq1(i) )
626  x11(i+1,i) = one
627  END IF
628  CALL clarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1, tauq2(i) )
629  x12(i,i) = one
630 *
631  IF( i .LT. q ) THEN
632  CALL clarf( 'L', q-i, p-i, x11(i+1,i), 1,
633  $ conjg(tauq1(i)), x11(i+1,i+1), ldx11, work )
634  CALL clarf( 'L', q-i, m-p-i, x11(i+1,i), 1,
635  $ conjg(tauq1(i)), x21(i+1,i+1), ldx21, work )
636  END IF
637  CALL clarf( 'L', m-q-i+1, p-i, x12(i,i), 1, conjg(tauq2(i)),
638  $ x12(i,i+1), ldx12, work )
639 
640  IF ( m-p .GT. i ) THEN
641  CALL clarf( 'L', m-q-i+1, m-p-i, x12(i,i), 1,
642  $ conjg(tauq2(i)), x22(i,i+1), ldx22, work )
643  END IF
644  END DO
645 *
646 * Reduce columns Q + 1, ..., P of X12, X22
647 *
648  DO i = q + 1, p
649 *
650  CALL cscal( m-q-i+1, cmplx( -z1*z4, 0.0e0 ), x12(i,i), 1 )
651  CALL clarfgp( m-q-i+1, x12(i,i), x12(i+1,i), 1, tauq2(i) )
652  x12(i,i) = one
653 *
654  IF ( p .GT. i ) THEN
655  CALL clarf( 'L', m-q-i+1, p-i, x12(i,i), 1,
656  $ conjg(tauq2(i)), x12(i,i+1), ldx12, work )
657  END IF
658  IF( m-p-q .GE. 1 )
659  $ CALL clarf( 'L', m-q-i+1, m-p-q, x12(i,i), 1,
660  $ conjg(tauq2(i)), x22(i,q+1), ldx22, work )
661 *
662  END DO
663 *
664 * Reduce columns P + 1, ..., M - Q of X12, X22
665 *
666  DO i = 1, m - p - q
667 *
668  CALL cscal( m-p-q-i+1, cmplx( z2*z4, 0.0e0 ),
669  $ x22(p+i,q+i), 1 )
670  CALL clarfgp( m-p-q-i+1, x22(p+i,q+i), x22(p+i+1,q+i), 1,
671  $ tauq2(p+i) )
672  x22(p+i,q+i) = one
673  IF ( m-p-q .NE. i ) THEN
674  CALL clarf( 'L', m-p-q-i+1, m-p-q-i, x22(p+i,q+i), 1,
675  $ conjg(tauq2(p+i)), x22(p+i,q+i+1), ldx22,
676  $ work )
677  END IF
678  END DO
679 *
680  END IF
681 *
682  RETURN
683 *
684 * End of CUNBDB
685 *
686  END
687 
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:54
subroutine cunbdb(TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO)
CUNBDB
Definition: cunbdb.f:289
subroutine clarfgp(N, ALPHA, X, INCX, TAU)
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition: clarfgp.f:106
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:130
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:53