LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
complex
Collaboration diagram for complex:

Functions/Subroutines

subroutine cgbmv (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 CGBMV
subroutine cgemv (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 CGEMV
subroutine cgerc (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 CGERC
subroutine cgeru (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 CGERU
subroutine chbmv (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 CHBMV
subroutine chemv (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 CHEMV
subroutine cher (UPLO, N, ALPHA, X, INCX, A, LDA)
 CHER
subroutine cher2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 CHER2
subroutine chpmv (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
 CHPMV
subroutine chpr (UPLO, N, ALPHA, X, INCX, AP)
 CHPR
subroutine chpr2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
 CHPR2
subroutine ctbmv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 CTBMV
subroutine ctbsv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 CTBSV
subroutine ctpmv (UPLO, TRANS, DIAG, N, AP, X, INCX)
 CTPMV
subroutine ctpsv (UPLO, TRANS, DIAG, N, AP, X, INCX)
 CTPSV
subroutine ctrmv (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 CTRMV
subroutine ctrsv (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 CTRSV

Detailed Description

This is the group of complex LEVEL 2 BLAS routines.


Function/Subroutine Documentation

subroutine cgbmv ( character  TRANS,
integer  M,
integer  N,
integer  KL,
integer  KU,
complex  ALPHA,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX,
complex  BETA,
complex, dimension(*)  Y,
integer  INCY 
)

CGBMV

Purpose:
 CGBMV  performs one of the matrix-vector operations

    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or

    y := alpha*A**H*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n band matrix, with kl sub-diagonals and ku super-diagonals.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.

              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.

              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A.
           M must be at least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A.
           N must be at least zero.
[in]KL
          KL is INTEGER
           On entry, KL specifies the number of sub-diagonals of the
           matrix A. KL must satisfy  0 .le. KL.
[in]KU
          KU is INTEGER
           On entry, KU specifies the number of super-diagonals of the
           matrix A. KU must satisfy  0 .le. KU.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry, the leading ( kl + ku + 1 ) by n part of the
           array A must contain the matrix of coefficients, supplied
           column by column, with the leading diagonal of the matrix in
           row ( ku + 1 ) of the array, the first super-diagonal
           starting at position 2 in row ku, the first sub-diagonal
           starting at position 1 in row ( ku + 2 ), and so on.
           Elements in the array A that do not correspond to elements
           in the band matrix (such as the top left ku by ku triangle)
           are not referenced.
           The following program segment will transfer a band matrix
           from conventional full matrix storage to band storage:

                 DO 20, J = 1, N
                    K = KU + 1 - J
                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
                       A( K + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( kl + ku + 1 ).
[in]X
          X is COMPLEX array of DIMENSION at least
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
           Before entry, the incremented array X must contain the
           vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]BETA
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
[in,out]Y
          Y is COMPLEX array of DIMENSION at least
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
           Before entry, the incremented array Y must contain the
           vector y. On exit, Y is overwritten by the updated vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 188 of file cgbmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine cgemv ( character  TRANS,
integer  M,
integer  N,
complex  ALPHA,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX,
complex  BETA,
complex, dimension(*)  Y,
integer  INCY 
)

CGEMV

Purpose:
 CGEMV performs one of the matrix-vector operations

    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or

    y := alpha*A**H*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.

              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.

              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y.
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A.
           M must be at least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, m ).
[in]X
          X is COMPLEX array of DIMENSION at least
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
           Before entry, the incremented array X must contain the
           vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]BETA
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
[in,out]Y
          Y is COMPLEX array of DIMENSION at least
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
           Before entry with BETA non-zero, the incremented array Y
           must contain the vector y. On exit, Y is overwritten by the
           updated vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 159 of file cgemv.f.

Here is the call graph for this function:

subroutine cgerc ( integer  M,
integer  N,
complex  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(*)  Y,
integer  INCY,
complex, dimension(lda,*)  A,
integer  LDA 
)

CGERC

Purpose:
 CGERC  performs the rank 1 operation

    A := alpha*x*y**H + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.
Parameters:
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A.
           M must be at least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( m - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the m
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
[in,out]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients. On exit, A is
           overwritten by the updated matrix.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, m ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 131 of file cgerc.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine cgeru ( integer  M,
integer  N,
complex  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(*)  Y,
integer  INCY,
complex, dimension(lda,*)  A,
integer  LDA 
)

CGERU

Purpose:
 CGERU  performs the rank 1 operation

    A := alpha*x*y**T + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.
Parameters:
[in]M
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A.
           M must be at least zero.
[in]N
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( m - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the m
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
[in,out]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients. On exit, A is
           overwritten by the updated matrix.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, m ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 131 of file cgeru.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine chbmv ( character  UPLO,
integer  N,
integer  K,
complex  ALPHA,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX,
complex  BETA,
complex, dimension(*)  Y,
integer  INCY 
)

CHBMV

Purpose:
 CHBMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian band matrix, with k super-diagonals.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the band matrix A is being supplied as
           follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  being supplied.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  being supplied.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]K
          K is INTEGER
           On entry, K specifies the number of super-diagonals of the
           matrix A. K must satisfy  0 .le. K.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the hermitian matrix, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer the upper
           triangular part of a hermitian band matrix from conventional
           full matrix storage to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the hermitian matrix, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer the lower
           triangular part of a hermitian band matrix from conventional
           full matrix storage to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).
[in]X
          X is COMPLEX array of DIMENSION at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the
           vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]BETA
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta.
[in,out]Y
          Y is COMPLEX array of DIMENSION at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the
           vector y. On exit, Y is overwritten by the updated vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 188 of file chbmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine chemv ( character  UPLO,
integer  N,
complex  ALPHA,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX,
complex  BETA,
complex, dimension(*)  Y,
integer  INCY 
)

CHEMV

Purpose:
 CHEMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, n ).
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]BETA
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
[in,out]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y. On exit, Y is overwritten by the updated
           vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 155 of file chemv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine cher ( character  UPLO,
integer  N,
real  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(lda,*)  A,
integer  LDA 
)

CHER

Purpose:
 CHER   performs the hermitian rank 1 operation

    A := alpha*x*x**H + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in,out]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced. On exit, the
           upper triangular part of the array A is overwritten by the
           upper triangular part of the updated matrix.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced. On exit, the
           lower triangular part of the array A is overwritten by the
           lower triangular part of the updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, n ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 136 of file cher.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine cher2 ( character  UPLO,
integer  N,
complex  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(*)  Y,
integer  INCY,
complex, dimension(lda,*)  A,
integer  LDA 
)

CHER2

Purpose:
 CHER2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an n
 by n hermitian matrix.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
[in,out]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced. On exit, the
           upper triangular part of the array A is overwritten by the
           upper triangular part of the updated matrix.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced. On exit, the
           lower triangular part of the array A is overwritten by the
           lower triangular part of the updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, n ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 151 of file cher2.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine chpmv ( character  UPLO,
integer  N,
complex  ALPHA,
complex, dimension(*)  AP,
complex, dimension(*)  X,
integer  INCX,
complex  BETA,
complex, dimension(*)  Y,
integer  INCY 
)

CHPMV

Purpose:
 CHPMV  performs the matrix-vector operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix, supplied in packed form.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]AP
          AP is COMPLEX array of DIMENSION at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]BETA
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
[in,out]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y. On exit, Y is overwritten by the updated
           vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 150 of file chpmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine chpr ( character  UPLO,
integer  N,
real  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(*)  AP 
)

CHPR

Purpose:
 CHPR    performs the hermitian rank 1 operation

    A := alpha*x*x**H + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix, supplied in packed form.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in,out]AP
          AP is COMPLEX array of DIMENSION at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 131 of file chpr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine chpr2 ( character  UPLO,
integer  N,
complex  ALPHA,
complex, dimension(*)  X,
integer  INCX,
complex, dimension(*)  Y,
integer  INCY,
complex, dimension(*)  AP 
)

CHPR2

Purpose:
 CHPR2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]ALPHA
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
[in]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
[in]Y
          Y is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
[in,out]AP
          AP is COMPLEX array of DIMENSION at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 146 of file chpr2.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctbmv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  K,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX 
)

CTBMV

Purpose:
 CTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]K
          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           tranformed vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 187 of file ctbmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctbsv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  K,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX 
)

CTBSV

Purpose:
 CTBSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular band matrix, with ( k + 1 )
 diagonals.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b.

              TRANS = 'T' or 't'   A**T*x = b.

              TRANS = 'C' or 'c'   A**H*x = b.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]K
          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element right-hand side vector b. On exit, X is overwritten
           with the solution vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 190 of file ctbsv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctpmv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
complex, dimension(*)  AP,
complex, dimension(*)  X,
integer  INCX 
)

CTPMV

Purpose:
 CTPMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular matrix, supplied in packed form.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]AP
          AP is COMPLEX array of DIMENSION at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
           respectively, and so on.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
           respectively, and so on.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced, but are assumed to be unity.
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           tranformed vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 143 of file ctpmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctpsv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
complex, dimension(*)  AP,
complex, dimension(*)  X,
integer  INCX 
)

CTPSV

Purpose:
 CTPSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b.

              TRANS = 'T' or 't'   A**T*x = b.

              TRANS = 'C' or 'c'   A**H*x = b.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]AP
          AP is COMPLEX array of DIMENSION at least
           ( ( n*( n + 1 ) )/2 ).
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
           respectively, and so on.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
           respectively, and so on.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced, but are assumed to be unity.
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element right-hand side vector b. On exit, X is overwritten
           with the solution vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 145 of file ctpsv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctrmv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX 
)

CTRMV

Purpose:
 CTRMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular matrix.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular matrix and the strictly lower triangular part of
           A is not referenced.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular matrix and the strictly upper triangular part of
           A is not referenced.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced either, but are assumed to be unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, n ).
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           tranformed vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 148 of file ctrmv.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine ctrsv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
complex, dimension(lda,*)  A,
integer  LDA,
complex, dimension(*)  X,
integer  INCX 
)

CTRSV

Purpose:
 CTRSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b.

              TRANS = 'T' or 't'   A**T*x = b.

              TRANS = 'C' or 'c'   A**H*x = b.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]A
          A is COMPLEX array of DIMENSION ( LDA, n ).
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular matrix and the strictly lower triangular part of
           A is not referenced.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular matrix and the strictly upper triangular part of
           A is not referenced.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced either, but are assumed to be unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, n ).
[in,out]X
          X is COMPLEX array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element right-hand side vector b. On exit, X is overwritten
           with the solution vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Level 2 Blas routine.

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 150 of file ctrsv.f.

Here is the call graph for this function:

Here is the caller graph for this function: