LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Functions/Subroutines  
DOUBLE PRECISION function  zla_porcond_c (UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK) 
ZLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positivedefinite matrices.  
DOUBLE PRECISION function  zla_porcond_x (UPLO, N, A, LDA, AF, LDAF, X, INFO, WORK, RWORK) 
ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positivedefinite matrices.  
subroutine  zla_porfsx_extended (PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO) 
ZLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positivedefinite matrices by performing extraprecise iterative refinement and provides error bounds and backward error estimates for the solution.  
DOUBLE PRECISION function  zla_porpvgrw (UPLO, NCOLS, A, LDA, AF, LDAF, WORK) 
ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positivedefinite matrix.  
subroutine  zpocon (UPLO, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO) 
ZPOCON  
subroutine  zpoequ (N, A, LDA, S, SCOND, AMAX, INFO) 
ZPOEQU  
subroutine  zpoequb (N, A, LDA, S, SCOND, AMAX, INFO) 
ZPOEQUB  
subroutine  zporfs (UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO) 
ZPORFS  
subroutine  zporfsx (UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO) 
ZPORFSX  
subroutine  zpotf2 (UPLO, N, A, LDA, INFO) 
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).  
subroutine  zpotrf (UPLO, N, A, LDA, INFO) 
ZPOTRF  
subroutine  zpotri (UPLO, N, A, LDA, INFO) 
ZPOTRI  
subroutine  zpotrs (UPLO, N, NRHS, A, LDA, B, LDB, INFO) 
ZPOTRS 
This is the group of complex16 computational functions for PO matrices
DOUBLE PRECISION function zla_porcond_c  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
double precision, dimension( * )  C,  
logical  CAPPLY,  
integer  INFO,  
complex*16, dimension( * )  WORK,  
double precision, dimension( * )  RWORK  
) 
ZLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positivedefinite matrices.
Download ZLA_PORCOND_C + dependencies [TGZ] [ZIP] [TXT]ZLA_PORCOND_C Computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the NbyN matrix A 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in]  C  C is DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * inv(diag(C)). 
[in]  CAPPLY  CAPPLY is LOGICAL If .TRUE. then access the vector C in the formula above. 
[out]  INFO  INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. 
[in]  WORK  WORK is COMPLEX*16 array, dimension (2*N). Workspace. 
[in]  RWORK  RWORK is DOUBLE PRECISION array, dimension (N). Workspace. 
Definition at line 131 of file zla_porcond_c.f.
DOUBLE PRECISION function zla_porcond_x  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
complex*16, dimension( * )  X,  
integer  INFO,  
complex*16, dimension( * )  WORK,  
double precision, dimension( * )  RWORK  
) 
ZLA_PORCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian positivedefinite matrices.
Download ZLA_PORCOND_X + dependencies [TGZ] [ZIP] [TXT]ZLA_PORCOND_X Computes the infinity norm condition number of op(A) * diag(X) where X is a COMPLEX*16 vector.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the NbyN matrix A. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in]  X  X is COMPLEX*16 array, dimension (N) The vector X in the formula op(A) * diag(X). 
[out]  INFO  INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. 
[in]  WORK  WORK is COMPLEX*16 array, dimension (2*N). Workspace. 
[in]  RWORK  RWORK is DOUBLE PRECISION array, dimension (N). Workspace. 
Definition at line 124 of file zla_porcond_x.f.
subroutine zla_porfsx_extended  (  integer  PREC_TYPE, 
character  UPLO,  
integer  N,  
integer  NRHS,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
logical  COLEQU,  
double precision, dimension( * )  C,  
complex*16, dimension( ldb, * )  B,  
integer  LDB,  
complex*16, dimension( ldy, * )  Y,  
integer  LDY,  
double precision, dimension( * )  BERR_OUT,  
integer  N_NORMS,  
double precision, dimension( nrhs, * )  ERR_BNDS_NORM,  
double precision, dimension( nrhs, * )  ERR_BNDS_COMP,  
complex*16, dimension( * )  RES,  
double precision, dimension( * )  AYB,  
complex*16, dimension( * )  DY,  
complex*16, dimension( * )  Y_TAIL,  
double precision  RCOND,  
integer  ITHRESH,  
double precision  RTHRESH,  
double precision  DZ_UB,  
logical  IGNORE_CWISE,  
integer  INFO  
) 
ZLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positivedefinite matrices by performing extraprecise iterative refinement and provides error bounds and backward error estimates for the solution.
Download ZLA_PORFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]ZLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations by performing extraprecise iterative refinement and provides error bounds and backward error estimates for the solution. This subroutine is called by ZPORFSX to perform iterative refinement. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. Note that this subroutine is only resonsible for setting the second fields of ERR_BNDS_NORM and ERR_BNDS_COMP.
[in]  PREC_TYPE  PREC_TYPE is INTEGER Specifies the intermediate precision to be used in refinement. The value is defined by ILAPREC(P) where P is a CHARACTER and P = 'S': Single = 'D': Double = 'I': Indigenous = 'X', 'E': Extra 
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of righthandsides, i.e., the number of columns of the matrix B. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the NbyN matrix A. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in]  COLEQU  COLEQU is LOGICAL If .TRUE. then column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly. 
[in]  C  C is DOUBLE PRECISION array, dimension (N) The column scale factors for A. If COLEQU = .FALSE., C is not accessed. If C is input, each element of C should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable. 
[in]  B  B is COMPLEX*16 array, dimension (LDB,NRHS) The righthandside matrix B. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in,out]  Y  Y is COMPLEX*16 array, dimension (LDY,NRHS) On entry, the solution matrix X, as computed by ZPOTRS. On exit, the improved solution matrix Y. 
[in]  LDY  LDY is INTEGER The leading dimension of the array Y. LDY >= max(1,N). 
[out]  BERR_OUT  BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) On exit, BERR_OUT(j) contains the componentwise relative backward error for righthandside j from the formula max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the componentwise absolute value of the matrix or vector Z. This is computed by ZLA_LIN_BERR. 
[in]  N_NORMS  N_NORMS is INTEGER Determines which error bounds to return (see ERR_BNDS_NORM and ERR_BNDS_COMP). If N_NORMS >= 1 return normwise error bounds. If N_NORMS >= 2 return componentwise error bounds. 
[in,out]  ERR_BNDS_NORM  ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each righthand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i)  X(j,i)))  max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith righthand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions. 
[in,out]  ERR_BNDS_COMP  ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each righthand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i)  X(j,i)) max_j  abs(X(j,i)) The array is indexed by the righthand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each righthand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith righthand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * slamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * slamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * slamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current righthand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. This subroutine is only responsible for setting the second field above. See Lapack Working Note 165 for further details and extra cautions. 
[in]  RES  RES is COMPLEX*16 array, dimension (N) Workspace to hold the intermediate residual. 
[in]  AYB  AYB is DOUBLE PRECISION array, dimension (N) Workspace. 
[in]  DY  DY is COMPLEX*16 PRECISION array, dimension (N) Workspace to hold the intermediate solution. 
[in]  Y_TAIL  Y_TAIL is COMPLEX*16 array, dimension (N) Workspace to hold the trailing bits of the intermediate solution. 
[in]  RCOND  RCOND is DOUBLE PRECISION Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill conditioned. 
[in]  ITHRESH  ITHRESH is INTEGER The maximum number of residual computations allowed for refinement. The default is 10. For 'aggressive' set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. 
[in]  RTHRESH  RTHRESH is DOUBLE PRECISION Determines when to stop refinement if the error estimate stops decreasing. Refinement will stop when the next solution no longer satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The default value is 0.5. For 'aggressive' set to 0.9 to permit convergence on extremely illconditioned matrices. See LAWN 165 for more details. 
[in]  DZ_UB  DZ_UB is DOUBLE PRECISION Determines when to start considering componentwise convergence. Componentwise convergence is only considered after each component of the solution Y is stable, which we definte as the relative change in each component being less than DZ_UB. The default value is 0.25, requiring the first bit to be stable. See LAWN 165 for more details. 
[in]  IGNORE_CWISE  IGNORE_CWISE is LOGICAL If .TRUE. then ignore componentwise convergence. Default value is .FALSE.. 
[out]  INFO  INFO is INTEGER = 0: Successful exit. < 0: if INFO = i, the ith argument to ZPOTRS had an illegal value 
Definition at line 385 of file zla_porfsx_extended.f.
DOUBLE PRECISION function zla_porpvgrw  (  character*1  UPLO, 
integer  NCOLS,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
double precision, dimension( * )  WORK  
) 
ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positivedefinite matrix.
Download ZLA_PORPVGRW + dependencies [TGZ] [ZIP] [TXT]ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The "max absolute element" norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  NCOLS  NCOLS is INTEGER The number of columns of the matrix A. NCOLS >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the NbyN matrix A. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in]  WORK  WORK is COMPLEX*16 array, dimension (2*N) 
Definition at line 107 of file zla_porpvgrw.f.
subroutine zpocon  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
double precision  ANORM,  
double precision  RCOND,  
complex*16, dimension( * )  WORK,  
double precision, dimension( * )  RWORK,  
integer  INFO  
) 
ZPOCON
Download ZPOCON + dependencies [TGZ] [ZIP] [TXT]ZPOCON estimates the reciprocal of the condition number (in the 1norm) of a complex Hermitian positive definite matrix using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  ANORM  ANORM is DOUBLE PRECISION The 1norm (or infinitynorm) of the Hermitian matrix A. 
[out]  RCOND  RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1norm of inv(A) computed in this routine. 
[out]  WORK  WORK is COMPLEX*16 array, dimension (2*N) 
[out]  RWORK  RWORK is DOUBLE PRECISION array, dimension (N) 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value 
Definition at line 121 of file zpocon.f.
subroutine zpoequ  (  integer  N, 
complex*16, dimension( lda, * )  A,  
integer  LDA,  
double precision, dimension( * )  S,  
double precision  SCOND,  
double precision  AMAX,  
integer  INFO  
) 
ZPOEQU
Download ZPOEQU + dependencies [TGZ] [ZIP] [TXT]ZPOEQU computes row and column scalings intended to equilibrate a Hermitian positive definite matrix A and reduce its condition number (with respect to the twonorm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The NbyN Hermitian positive definite matrix whose scaling factors are to be computed. Only the diagonal elements of A are referenced. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[out]  S  S is DOUBLE PRECISION array, dimension (N) If INFO = 0, S contains the scale factors for A. 
[out]  SCOND  SCOND is DOUBLE PRECISION If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S. 
[out]  AMAX  AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the ith diagonal element is nonpositive. 
Definition at line 114 of file zpoequ.f.
subroutine zpoequb  (  integer  N, 
complex*16, dimension( lda, * )  A,  
integer  LDA,  
double precision, dimension( * )  S,  
double precision  SCOND,  
double precision  AMAX,  
integer  INFO  
) 
ZPOEQUB
Download ZPOEQUB + dependencies [TGZ] [ZIP] [TXT]ZPOEQUB computes row and column scalings intended to equilibrate a symmetric positive definite matrix A and reduce its condition number (with respect to the twonorm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The NbyN symmetric positive definite matrix whose scaling factors are to be computed. Only the diagonal elements of A are referenced. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[out]  S  S is DOUBLE PRECISION array, dimension (N) If INFO = 0, S contains the scale factors for A. 
[out]  SCOND  SCOND is DOUBLE PRECISION If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S. 
[out]  AMAX  AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the ith diagonal element is nonpositive. 
Definition at line 114 of file zpoequb.f.
subroutine zporfs  (  character  UPLO, 
integer  N,  
integer  NRHS,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
complex*16, dimension( ldb, * )  B,  
integer  LDB,  
complex*16, dimension( ldx, * )  X,  
integer  LDX,  
double precision, dimension( * )  FERR,  
double precision, dimension( * )  BERR,  
complex*16, dimension( * )  WORK,  
double precision, dimension( * )  RWORK,  
integer  INFO  
) 
ZPORFS
Download ZPORFS + dependencies [TGZ] [ZIP] [TXT]ZPORFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite, and provides error bounds and backward error estimates for the solution.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The Hermitian matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in]  B  B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in,out]  X  X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZPOTRS. On exit, the improved solution matrix X. 
[in]  LDX  LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). 
[out]  FERR  FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the jth column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j)  XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. 
[out]  BERR  BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). 
[out]  WORK  WORK is COMPLEX*16 array, dimension (2*N) 
[out]  RWORK  RWORK is DOUBLE PRECISION array, dimension (N) 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value 
ITMAX is the maximum number of steps of iterative refinement.
Definition at line 183 of file zporfs.f.
subroutine zporfsx  (  character  UPLO, 
character  EQUED,  
integer  N,  
integer  NRHS,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldaf, * )  AF,  
integer  LDAF,  
double precision, dimension( * )  S,  
complex*16, dimension( ldb, * )  B,  
integer  LDB,  
complex*16, dimension( ldx, * )  X,  
integer  LDX,  
double precision  RCOND,  
double precision, dimension( * )  BERR,  
integer  N_ERR_BNDS,  
double precision, dimension( nrhs, * )  ERR_BNDS_NORM,  
double precision, dimension( nrhs, * )  ERR_BNDS_COMP,  
integer  NPARAMS,  
double precision, dimension(*)  PARAMS,  
complex*16, dimension( * )  WORK,  
double precision, dimension( * )  RWORK,  
integer  INFO  
) 
ZPORFSX
Download ZPORFSX + dependencies [TGZ] [ZIP] [TXT]ZPORFSX improves the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite, and provides error bounds and backward error estimates for the solution. In addition to normwise error bound, the code provides maximum componentwise error bound if possible. See comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. The original system of linear equations may have been equilibrated before calling this routine, as described by arguments EQUED and S below. In this case, the solution and error bounds returned are for the original unequilibrated system.
Some optional parameters are bundled in the PARAMS array. These settings determine how refinement is performed, but often the defaults are acceptable. If the defaults are acceptable, users can pass NPARAMS = 0 which prevents the source code from accessing the PARAMS argument.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  EQUED  EQUED is CHARACTER*1 Specifies the form of equilibration that was done to A before calling this routine. This is needed to compute the solution and error bounds correctly. = 'N': No equilibration = 'Y': Both row and column equilibration, i.e., A has been replaced by diag(S) * A * diag(S). The right hand side B has been changed accordingly. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in]  AF  AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. 
[in]  LDAF  LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). 
[in,out]  S  S is DOUBLE PRECISION array, dimension (N) The row scale factors for A. If EQUED = 'Y', A is multiplied on the left and right by diag(S). S is an input argument if FACT = 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED = 'Y', each element of S must be positive. If S is output, each element of S is a power of the radix. If S is input, each element of S should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable. 
[in]  B  B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in,out]  X  X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DGETRS. On exit, the improved solution matrix X. 
[in]  LDX  LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). 
[out]  RCOND  RCOND is DOUBLE PRECISION Reciprocal scaled condition number. This is an estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If this is less than the machine precision (in particular, if it is zero), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill conditioned. 
[out]  BERR  BERR is DOUBLE PRECISION array, dimension (NRHS) Componentwise relative backward error. This is the componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). 
[in]  N_ERR_BNDS  N_ERR_BNDS is INTEGER Number of error bounds to return for each right hand side and each type (normwise or componentwise). See ERR_BNDS_NORM and ERR_BNDS_COMP below. 
[out]  ERR_BNDS_NORM  ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each righthand side, this array contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows: Normwise relative error in the ith solution vector: max_j (abs(XTRUE(j,i)  X(j,i)))  max_j abs(X(j,i)) The array is indexed by the type of error information as described below. There currently are up to three pieces of information returned. The first index in ERR_BNDS_NORM(i,:) corresponds to the ith righthand side. The second index in ERR_BNDS_NORM(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * dlamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * dlamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n) * dlamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*A, where S scales each row by a power of the radix so all absolute row sums of Z are approximately 1. See Lapack Working Note 165 for further details and extra cautions. 
[out]  ERR_BNDS_COMP  ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) For each righthand side, this array contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows: Componentwise relative error in the ith solution vector: abs(XTRUE(j,i)  X(j,i)) max_j  abs(X(j,i)) The array is indexed by the righthand side i (on which the componentwise relative error depends), and the type of error information as described below. There currently are up to three pieces of information returned for each righthand side. If componentwise accuracy is not requested (PARAMS(3) = 0.0), then ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most the first (:,N_ERR_BNDS) entries are returned. The first index in ERR_BNDS_COMP(i,:) corresponds to the ith righthand side. The second index in ERR_BNDS_COMP(:,err) contains the following three fields: err = 1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) * dlamch('Epsilon'). err = 2 "Guaranteed" error bound: The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n) * dlamch('Epsilon'). This error bound should only be trusted if the previous boolean is true. err = 3 Reciprocal condition number: Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n) * dlamch('Epsilon') to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1 / (norm(Z^{1},inf) * norm(Z,inf)) for some appropriately scaled matrix Z. Let Z = S*(A*diag(x)), where x is the solution for the current righthand side and S scales each row of A*diag(x) by a power of the radix so all absolute row sums of Z are approximately 1. See Lapack Working Note 165 for further details and extra cautions. 
[in]  NPARAMS  NPARAMS is INTEGER Specifies the number of parameters set in PARAMS. If .LE. 0, the PARAMS array is never referenced and default values are used. 
[in,out]  PARAMS  PARAMS is DOUBLE PRECISION array, dimension NPARAMS Specifies algorithm parameters. If an entry is .LT. 0.0, then that entry will be filled with default value used for that parameter. Only positions up to NPARAMS are accessed; defaults are used for highernumbered parameters. PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative refinement or not. Default: 1.0D+0 = 0.0 : No refinement is performed, and no error bounds are computed. = 1.0 : Use the doubleprecision refinement algorithm, possibly with doubledsingle computations if the compilation environment does not support DOUBLE PRECISION. (other values are reserved for future use) PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual computations allowed for refinement. Default: 10 Aggressive: Set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy. PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code will attempt to find a solution with small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence) 
[out]  WORK  WORK is COMPLEX*16 array, dimension (2*N) 
[out]  RWORK  RWORK is DOUBLE PRECISION array, dimension (2*N) 
[out]  INFO  INFO is INTEGER = 0: Successful exit. The solution to every righthand side is guaranteed. < 0: If INFO = i, the ith argument had an illegal value > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+J: The solution corresponding to the Jth righthand side is not guaranteed. The solutions corresponding to other right hand sides K with K > J may not be guaranteed as well, but only the first such righthand side is reported. If a small componentwise error is not requested (PARAMS(3) = 0.0) then the Jth righthand side is the first with a normwise error bound that is not guaranteed (the smallest J such that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) the Jth righthand side is the first with either a normwise or componentwise error bound that is not guaranteed (the smallest J such that either ERR_BNDS_NORM(J,1) = 0.0 or ERR_BNDS_COMP(J,1) = 0.0). See the definition of ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information about all of the righthand sides check ERR_BNDS_NORM or ERR_BNDS_COMP. 
Definition at line 391 of file zporfsx.f.
subroutine zpotf2  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
integer  INFO  
) 
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
Download ZPOTF2 + dependencies [TGZ] [ZIP] [TXT]ZPOTF2 computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form A = U**H * U , if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the unblocked version of the algorithm, calling Level 2 BLAS.
[in]  UPLO  UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored. = 'U': Upper triangular = 'L': Lower triangular 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in,out]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = k, the kth argument had an illegal value > 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed. 
Definition at line 110 of file zpotf2.f.
subroutine zpotrf  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
integer  INFO  
) 
ZPOTRF
Download ZPOTRF + dependencies [TGZ] [ZIP] [TXT]ZPOTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the block version of the algorithm, calling Level 3 BLAS.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in,out]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading NbyN upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading NbyN lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. 
Definition at line 108 of file zpotrf.f.
subroutine zpotri  (  character  UPLO, 
integer  N,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
integer  INFO  
) 
ZPOTRI
Download ZPOTRI + dependencies [TGZ] [ZIP] [TXT]ZPOTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in,out]  A  A is COMPLEX*16 array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. On exit, the upper or lower triangle of the (Hermitian) inverse of A, overwriting the input factor U or L. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. 
Definition at line 96 of file zpotri.f.
subroutine zpotrs  (  character  UPLO, 
integer  N,  
integer  NRHS,  
complex*16, dimension( lda, * )  A,  
integer  LDA,  
complex*16, dimension( ldb, * )  B,  
integer  LDB,  
integer  INFO  
) 
ZPOTRS
Download ZPOTRS + dependencies [TGZ] [ZIP] [TXT]ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H * U or A = L * L**H computed by ZPOTRF.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in]  A  A is COMPLEX*16 array, dimension (LDA,N) The triangular factor U or L from the Cholesky factorization A = U**H * U or A = L * L**H, as computed by ZPOTRF. 
[in]  LDA  LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). 
[in,out]  B  B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value 
Definition at line 111 of file zpotrs.f.