001: DOUBLE PRECISION FUNCTION DLANGT( NORM, N, DL, D, DU ) 002: * 003: * -- LAPACK auxiliary routine (version 3.2) -- 004: * -- LAPACK is a software package provided by Univ. of Tennessee, -- 005: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 006: * November 2006 007: * 008: * .. Scalar Arguments .. 009: CHARACTER NORM 010: INTEGER N 011: * .. 012: * .. Array Arguments .. 013: DOUBLE PRECISION D( * ), DL( * ), DU( * ) 014: * .. 015: * 016: * Purpose 017: * ======= 018: * 019: * DLANGT returns the value of the one norm, or the Frobenius norm, or 020: * the infinity norm, or the element of largest absolute value of a 021: * real tridiagonal matrix A. 022: * 023: * Description 024: * =========== 025: * 026: * DLANGT returns the value 027: * 028: * DLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' 029: * ( 030: * ( norm1(A), NORM = '1', 'O' or 'o' 031: * ( 032: * ( normI(A), NORM = 'I' or 'i' 033: * ( 034: * ( normF(A), NORM = 'F', 'f', 'E' or 'e' 035: * 036: * where norm1 denotes the one norm of a matrix (maximum column sum), 037: * normI denotes the infinity norm of a matrix (maximum row sum) and 038: * normF denotes the Frobenius norm of a matrix (square root of sum of 039: * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 040: * 041: * Arguments 042: * ========= 043: * 044: * NORM (input) CHARACTER*1 045: * Specifies the value to be returned in DLANGT as described 046: * above. 047: * 048: * N (input) INTEGER 049: * The order of the matrix A. N >= 0. When N = 0, DLANGT is 050: * set to zero. 051: * 052: * DL (input) DOUBLE PRECISION array, dimension (N-1) 053: * The (n-1) sub-diagonal elements of A. 054: * 055: * D (input) DOUBLE PRECISION array, dimension (N) 056: * The diagonal elements of A. 057: * 058: * DU (input) DOUBLE PRECISION array, dimension (N-1) 059: * The (n-1) super-diagonal elements of A. 060: * 061: * ===================================================================== 062: * 063: * .. Parameters .. 064: DOUBLE PRECISION ONE, ZERO 065: PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 066: * .. 067: * .. Local Scalars .. 068: INTEGER I 069: DOUBLE PRECISION ANORM, SCALE, SUM 070: * .. 071: * .. External Functions .. 072: LOGICAL LSAME 073: EXTERNAL LSAME 074: * .. 075: * .. External Subroutines .. 076: EXTERNAL DLASSQ 077: * .. 078: * .. Intrinsic Functions .. 079: INTRINSIC ABS, MAX, SQRT 080: * .. 081: * .. Executable Statements .. 082: * 083: IF( N.LE.0 ) THEN 084: ANORM = ZERO 085: ELSE IF( LSAME( NORM, 'M' ) ) THEN 086: * 087: * Find max(abs(A(i,j))). 088: * 089: ANORM = ABS( D( N ) ) 090: DO 10 I = 1, N - 1 091: ANORM = MAX( ANORM, ABS( DL( I ) ) ) 092: ANORM = MAX( ANORM, ABS( D( I ) ) ) 093: ANORM = MAX( ANORM, ABS( DU( I ) ) ) 094: 10 CONTINUE 095: ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN 096: * 097: * Find norm1(A). 098: * 099: IF( N.EQ.1 ) THEN 100: ANORM = ABS( D( 1 ) ) 101: ELSE 102: ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ), 103: $ ABS( D( N ) )+ABS( DU( N-1 ) ) ) 104: DO 20 I = 2, N - 1 105: ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+ 106: $ ABS( DU( I-1 ) ) ) 107: 20 CONTINUE 108: END IF 109: ELSE IF( LSAME( NORM, 'I' ) ) THEN 110: * 111: * Find normI(A). 112: * 113: IF( N.EQ.1 ) THEN 114: ANORM = ABS( D( 1 ) ) 115: ELSE 116: ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ), 117: $ ABS( D( N ) )+ABS( DL( N-1 ) ) ) 118: DO 30 I = 2, N - 1 119: ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+ 120: $ ABS( DL( I-1 ) ) ) 121: 30 CONTINUE 122: END IF 123: ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 124: * 125: * Find normF(A). 126: * 127: SCALE = ZERO 128: SUM = ONE 129: CALL DLASSQ( N, D, 1, SCALE, SUM ) 130: IF( N.GT.1 ) THEN 131: CALL DLASSQ( N-1, DL, 1, SCALE, SUM ) 132: CALL DLASSQ( N-1, DU, 1, SCALE, SUM ) 133: END IF 134: ANORM = SCALE*SQRT( SUM ) 135: END IF 136: * 137: DLANGT = ANORM 138: RETURN 139: * 140: * End of DLANGT 141: * 142: END 143: